python做大数据分析统计服_Python数据分析实战:降雨量统计分析报告分析

本文介绍如何使用Python进行降雨量数据分析,包括数据读取、异常值处理、统计分析和生成Word报告。通过计算降雨量的增减比例,分析各气象观测站的降雨情况,并详细阐述了代码实现过程。
摘要由CSDN通过智能技术生成

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

以下文章来源于菜J学Python ,作者小小明

最近遇到一个有点烧脑的需求,其实也不算烧脑,主要是判断条件过多,对于我这种记忆力差,内存小的人来说容易出现内存溢出导致大脑宕机。也可能是因为我还没有找到能减小大脑内存压力的方法。

先看看需求吧:

a17c6be522a431c0d8150e4910c138a4.png

主要就是要根据左侧的表格自动生成右侧的Word统计报告,实际的各种可能性情况远比图中展示的要更加复杂。

好了,直接开始干代码吧!

1数据读取

import pandas as pd

df = pd.read_csv("11月份数据.csv", encoding='gbk')

# 当前统计月份

month = 11

df = df.query('月份==@month')

df.head(10)

预览数据:

aa976b5fc884c8b52e15f619ad761d7d.png

2异常数据过滤

查看缺失值数量:

pd.isnull(df).sum()

结果:

区域          0

月份          0

降雨量(mm)     0

降雨距平(mm)    1

观测站         0

dtype: int64

仅一个缺失值数据,可直接删除:

df.dropna(inplace=True)

3计算观测站降雨量相对往年的变化

计算降雨量比往年高,跟往年比无变化,以及比往年低的次数分别是多少:

rainfall_high = df.eval('`降雨距平(mm)` > 0').value_counts().get(True, 0)

rainfall_equal = df.eval('`降雨距平(mm)` == 0').value_counts().get(True, 0)

rainfall_low = df.eval('`降雨距平(mm)` 

print(rainfall_high, rainfall_equal, rainfall_low)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值