r语言echarts画箱线图_R语言数据可视化---交互式图表recharts包

本文介绍了R语言中使用recharts包创建交互式图表的方法,包括散点图、气泡图、折线图、饼图、雷达图和仪表盘等多种图表类型,并给出了详细的代码示例和数据集转换。recharts提供了丰富的图表类型和定制选项,为R语言的数据可视化带来更多的可能性。
摘要由CSDN通过智能技术生成

REmap包的github链接地址:https://github.com/taiyun/recharts

几个样例demo:http://xwj.565tech.com/jianshu/recharts/ring.html

http://xwj.565tech.com/jianshu/recharts/dashboard.html

http://xwj.565tech.com/jianshu/recharts/bubble.html

一.安装方式

if (!require(devtools)) library(devtools)

install_github("madlogos/recharts")

二.使用方法:

1.散点图/气泡图

echartr(iris, x=SepalWidth, y=PetalWidth)

多个维度:series控制

echartr(iris, x=SepalWidth, y=PetalWidth, series=Species)

气泡图:type:标签控制

echartr(iris, SepalWidth, PetalWidth,series = Species, weight=PetalLength, type='bubble')

3b5a7bf2c42d9508ba1578ba5604d9aa.png

30074d0a83f076f3f55c054cc2ae52b0.png

65b74ec95e22fbff9f941ef0f1835dc1.png

2.管道操作

echartr(iris, SepalWidth, PetalWidth, weight=PetalLength) %>%

setDataRange(calculable=TRUE, splitNumber=0, labels=c('Big','Small'),

color=c('red', 'yellow', 'green'), valueRange=c(0, 2.5))

cec467ffeedf02a7a4adc19b9b527d3f.png

3.折线图

先改造下内置数据集:

aq

aq$Date

aq$Day

aq$Month

echartr(aq, Date, Temp, type='line') %>%

setTitle('NY Temperature May - Sep 1973') %>% setSymbols('none')

含有分类属性:

echartr(aq, Day, Temp, Month, type='line') %>%

setTitle('NY Temperature May - Sep 1973, by Month') %>%

setSymbols('emptycircle')

带有时间轴(带有动态效果哦~~~):

echartr(aq, Day, Temp, t=Month, type='line') %>%

setTitle('NY Temperature May - Sep 1973, by Month') %>%

setSymbols('emptycircle')

也可画面积图:type属性控制

echartr(aq, Day, Temp, Month, type='area', subtype='stack') %>%

setTitle('NY Temperature May - Sep 1973, by Month') %>%

setSymbols('emptycircle')

9a7f23c70118dfabae51ac49d104011e.png

7e0362c4d03919e6b37fad3a918f61d2.png

91cc68c6599e946a41c895f937998417.png

f44351281f05a4ae431ce61ad6a855b8.png

4.饼图

重构内置数据集

titanic

names(titanic)

knitr::kable(titanic)

画饼图,可以和漏斗图切换

echartr(titanic, Class, Count, type='pie') %>%

setTitle('Titanic: N by Cabin Class')

多个饼图:

echartr(titanic, Survived, Count, facet=Class, type='pie') %>%

setTitle('Titanic: Survival Outcome by Cabin Class')

环图:

echartr(titanic, Survived, Count, facet=Class, type='ring') %>%

setTitle('Titanic: Survival Outcome by Cabin Class')

信息图样环图:

ds

a=c(68, 29, 3))

g %

setTheme('macarons', width=800, height=600) %>%

setTitle('How do you feel?','ring_info',

pos=c('center','center', 'horizontal'))

g

南丁格尔玫瑰图:

echartr(titanic, Class, Count, facet=Survived, type='rose', subtype='radius') %>%

setTitle('Titanic: Survival Outcome by Cabin Class')

6e23a696964e67edaa60809520e9008f.png

81d0634addf5ce8fcee530770dcff13a.png

78bf15b3f08fde6eb1cdc9b51dcb51eb.png

cdb4e96df8d17bcbc7e811f2a303772e.png

518e9a16139cbaff70045dfa1a018369.png

41f171eb786412f7426f5d725f40eba0.png

5.雷达图:

重构内置数据集

cars = mtcars[c('Merc 450SE','Merc 450SL','Merc 450SLC'),

c('mpg','disp','hp','qsec','wt','drat')]

cars$model

cars

names(cars)

knitr::kable(cars)

单个雷达图

echartr(cars, indicator, Parameter, model, type='radar', sub='fill') %>%

setTitle('Merc 450SE  vs  450SL  vs  450SLC')

多个雷达图:

echartr(cars, indicator, Parameter, facet=model, type='radar') %>%

setTitle('Merc 450SE  vs  450SL  vs  450SLC')

6cde580657d863becf32b5e8e98496b2.png

b15cf9fcb929e6d1873d12775d6081cd.png

6.比较有趣的dashboard

构造一个数据集:

data = data.frame(x=rep(c('KR/min', 'Kph'), 2), y=c(3.3, 56, 9.5, 88),

z=c(rep('t1', 2), rep('t2', 2)))

knitr::kable(data)

echartr(data, x, y, type='gauge')

多个dashboard:

echartr(data, x, y, facet=x, type='gauge')

带时间轴:

echartr(data, x, y, facet=x, t=z, type='gauge')

99ec05ff064cd78535059db8c0709964.png

1cb0886ace936b5e81f68ed638ea0ba7.png

87d798eb0d9d9182283208982bd3499b.png

基本上常用的数据图表展示recharts都可以很方便和很酷炫的展示,作者只是挑选了几个比较常用的图表类型做了抛砖迎玉.

具体的细节各位可以去查看具体的文档:https://madlogos.github.io/recharts/index_cn.html#-en

欢迎加入本站公开兴趣群

商业智能与数据分析群

兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识

QQ群:81035754

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值