halcon 线段提点_Halcon算子之fit_line_contour_xld,用于对一些线段的XLD做近似计算

Halcon的fit_line_contour_xld算子用于对XLD轮廓进行线性近似计算,支持多种算法如回归、Huber和Tukey。该函数考虑异常值处理,并通过ClippingFactor参数调整。本文详细介绍了算子参数及应用,包括轮廓点数量、迭代次数和线参数的获取。
摘要由CSDN通过智能技术生成

函数原型:

fit_line_contour_xld( Contours : : Algorithm, MaxNumPoints,

ClippingEndPoints, Iterations, ClippingFactor : RowBegin, ColBegin,

RowEnd, ColEnd, Nr, Nc, Dist )

函数作用:

对一些线段的XLD做近似计算直线计算

对于参数Algorithm中的一些类型解释如下:

regression:回归,标准的最小二乘法拟合

huber:加权的最小二乘法拟合,异常值的影响被减小基于Huber方法

tukey:加权的最小二乘法拟合,异常值的影响被减小基于Tukey方法

drop:加权的最小二乘法拟合,异常值的影响被消除

gauss:加权的最小二乘法拟合,异常值的影响被减小基于最逼近线上的所有其轮廓点的平均值和距离标准方差

ClippingFactor控制被弱化的异常值个数,值越小,越多异常值被检测到。

最小拟合一条线的必要轮廓点个数是2,因此,一条轮廓线点个数至少是2+2*ClippingEndPoints\

参数列表:

Contours(in):输入轮廓

Algorithm(in):形成线的算法

MaxNumPoints(in):用于计算的最大轮廓点个数

ClippingEndPoints(in):在逼近过程中被忽略的开始及末尾点个数

Iterations(in):迭代的最大次数

ClippingFactor(in):消除异常值的裁剪因子

RowBegin(out):线段开始点的行坐标

ColBegin(out):线段开始的列坐标

RowEnd(out):线段结尾的行坐标

ColEnd(out):线段结尾的列坐标

Nr(out):线参数:法向量的行坐标

Nc(out):法向量的列坐标

Dist(out):原点到该线的距离

可能前置项:

gen_contours_skeleton_xld, lines_gauss, lines_facet,

edges_sub_pix, smooth_contours_xld

可能后置项:

disp_line, select_lines, line_orientation

可替代项:

regress_contours_xld, get_regress_params_xld

Halcon中的fit_line_contour_xld算子可以用OpenCV中的fitLine函数来实现。fitLine函数可以拟合一条直线,从而实现对轮廓的拟合。具体步骤如下: 1. 读入图像,并将其转换为灰度图像。 2. 对图像进行二值化处理。 3. 使用findContours函数查找轮廓。 4. 对轮廓进行拟合,使用fitLine函数。 5. 计算拟合直线的斜率和截距。 6. 绘制检测结果,显示图像。 下面是一个简单的示例代码: ``` import cv2 import numpy as np # 读入图像并转换为灰度图像 img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化图像 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 查找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # 对轮廓进行拟合 rows,cols = img.shape[:2] vx,vy,x,y = cv2.fitLine(contours[0], cv2.DIST_L2, 0, 0.01, 0.01) lefty = int((-x*vy/vx) + y) righty = int(((cols-x)*vy/vx)+y) # 绘制检测结果 cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2) # 显示图像 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在此示例中,我们首先读取一张图像,然后将其转换为灰度图像并进行二值化处理。接下来,我们使用findContours函数查找轮廓,并使用fitLine函数对轮廓进行拟合。然后,我们计算拟合直线的斜率和截距,并使用cv2.line函数在图像上绘制该直线。最后,我们显示图像并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值