15拆分成3个不同的自然数_整数拆分的练习题

这是一个关于整数拆分的系列练习题,涵盖了多种拆分情况,例如将数字拆分为不同数量的自然数、素数、连续自然数之和,以及如何使用特定面额硬币支付不同金额。通过这些题目,可以锻炼解决整数拆分问题的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整数拆分的练习题

整数拆分的练习题1

1、把60分拆成10个素数之和,要求其中最大的素数尽可能小,那么这个最大素数是几?

e7dcbd5715ff32e1d52d4e2bb3bf65b6.png

2、一个自然数,可以分拆成3个连续自然数之和,也可以分拆成4个连续自然数之和,还可以分拆成7个连续自然数之和。这个自然数最小是几?

3、自然数20xx能否拆成若干个连续自然数之和?如果能,有几种不同的拆法?

4、百货店要将铁钉包成10包,每包数量互不相等。如果顾客来买不超过1000枚的任意个数的铁钉,都要能从这10包中适当选取而不用拆包,能否做到?若能,请给出一种包装方法:若不能,说明理由。

5、有一把长度为9厘米却没有刻度的尺子,能否在上面画3条刻度线,使得这把尺子可以直接测量出1---9厘米的所有整厘米长度?若能,共有几种不同的画法?

整数拆分的练习题2

把70表示成11个不同的自然数之和,同时要求含有质数的个数最多。

分析:先考虑把70表示成11个不同的自然数之和。因1+2+3+……+11=66,现在要将4分配到适当的加数上,使其和等于70,又要使这11个加数互不相等。先将4分别加在后四个加数上,得到四种分拆方法:

70=1+2+3+4+5+6+7+8+9+10+15

=1+2+3+4+5+6+7+8+9+14+11

=1+2+3+4+5+6+7+8+13+10+11

=1+2+3+4+5+6+7+12+9+10+11

再将4拆成1+3,把1和3放在适当的位置上,仅有一种新方法:

70==1+2+3+4+5+6+7+8+9+13+12

再将4拆成1+1+2或1+1+1+1或2+2,分别加在不同的位置上,都得不出新的分拆方法,故这样的分拆方法一共有五种。

显然,这五种分拆方法中含有质数的'个数最多的是:

1+2+3+4+5+6+7+8+13+10+11

点金术:巧用举例和筛选法得出结论。

整数拆分的练习题3

某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?

【答案解析】

这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆.

7=1+2+4

9=1+8

10=2+8

13=1+4+8

14=2+4+8

15=1+2+4+8

【整数拆分的练习题】相关文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值