(1)冒泡排序
冒泡排序就是把小的元素往前调或者把大的元素日后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。因此,若是两个元素相等,我想你是不会再无聊地把他们俩交换一下的;若是两个相等的元素没有相邻,那么即便经过前面的两两交换把两个相邻起来,这时候也不会交换,因此相同元素的先后顺序并无改变,因此冒泡排序是一种稳定排序算法。html
(2)选择排序
选择排序是给每一个位置选择当前元素最小的,好比给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n - 1个元素,第n个元素不用选择了,由于只剩下它一个最大的元素了。那么,在一趟选择,若是当前元素比一个元素小,而该小的元素又出如今一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,咱们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对先后顺序就被破坏了,因此选择排序不是一个稳定的排序算法。web
(3)插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。固然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,若是比它大则直接插入在其后面,不然一直往前找直到找到它该插入的位置。若是遇见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。因此,相等元素的先后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,因此插入排序是稳定的。算法
(4)快速排序
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,通常取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。若是i和j都走不动了,i <= j,交换a[i]和a[j],重复上面的过程,直到i > j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,颇有可能把前面的元素的稳定性打乱,好比序列为5 3 3 4 3 8 9 10 11,如今中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,因此快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻。shell
(5)归并排序
归并排序是把序列递归地分红短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),而后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列所有排好序。能够发现,在1个或2个元素时,1个元素不会交换,2个元素若是大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程当中,稳定是是否受到破坏?没有,合并过程当中咱们能够保证若是两个当前元素相等时,咱们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。因此,归并排序也是稳定的排序算法。数组
(6)基数排序
基数排序是按照低位先排序,而后收集;再按照高位排序,而后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,因此其是稳定的排序算法。svg
(7)希尔排序(shell)
希尔排序是按照不一样步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,因此插入排序的元素个数不多,速度很快;当元素基本有序了,步长很小, 插入排序对于有序的序列效率很高。因此,希尔排序的时间复杂度会比O(n^2)好一些。因为屡次插入排序,咱们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不一样的插入排序过程当中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,因此shell排序是不稳定的。xml
(8)堆排序
咱们知道堆的结构是节点i的孩子为2 * i和2 * i + 1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n 的序列,堆排序的过程是从第n / 2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择固然不会破坏稳定性。但当为n / 2 - 1, n / 2 - 2, … 1这些个父节点选择元素时,就会破坏稳定性。有可能第n / 2个父节点交换把后面一个元素交换过去了,而第n / 2 - 1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了。因此,堆排序不是稳定的排序算法。htm
综上,得出结论:
选择排序、快速排序、希尔排序、堆排序是不稳定的排序算法,
而冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法blog
给一张图=表总结一下: