《用matlab实现氢原子的sp杂化轨道可视化》由会员分享,可在线阅读,更多相关《用matlab实现氢原子的sp杂化轨道可视化(4页珍藏版)》请在金锄头文库上搜索。
1、用matlab实现氢原子的sp杂化轨道可视化作者:W.C.众所周知,数学软件 matlab 有 许多的应用,其中在量子化学上,其可用于分子或者原子轨道的可视化。一一 公式提要:此处只是简单提一提,方便读 者可以大体上直接阅读懂代 码,如果 读者希望进一步了解相关知识请自行翻阅课本对于 sp 轨道的杂化,我们有如下公式:对于原子的 s,p 轨道书上也都有具体的公式,此处不再详 述。一一 m 程序代码:这里我们以氢原子为例:X = 0:0.1:36.0;Y = 0:0.0175:2*pi;r,theta=meshgrid(X,Y);% 构建一个 X,Y的矩阵用于绘图xigma = r;% 定义西格。
2、玛(虽然为了需要与 r值相等)Psi_1 = 1./2.(1./2).*(1./4./pi)./2.(3./2).*(2-xigma).*exp(-xigma./2)+(3./4./pi).(1./2).*cos(theta)./2./6.(1./2).*xigma.*exp(-xigma./2);% 这是 Psi 1的方程Psi_2 = 1./2.(1./2).*(1./4./pi)./2.(3./2).*(2-xigma).*exp(-xigma./2)-(3./4./pi).(1./2).*cos(theta)./2./6.(1./2).*xigma.*exp(-xigma./2);% 。
3、这是 Psi 2的方程subplot(2,2,1),mesh(r.*cos(theta),r.*sin(theta),Psi_1),title(psi_1)subplot(2,2,3),mesh(r.*cos(theta),r.*sin(theta),Psi_2),title(psi_2)% subplot函数用于构建在一个 Figure中的多个图同时显示,前面的两个参数用于描述总共有 a*b个子图,后面的一个参数描述后面的图形为第几个图,顺序从左到右% mesh为绘制三维曲面图的函数,此处因为参数是 r,cos(theta),故我们让 x=r*cos(theta),y=r*sin(theta。
4、)即可绘图(此法不用在前面做矩阵转换)% title函数为曲面的名称,在图片正上方subplot(2,2,2),contour(r.*cos(theta)./1.0,r.*sin(theta)./1.0,Psi_1,30),title(psi_1 contour)subplot(2,2,4),contour(r.*cos(theta)./1.0,r.*sin(theta)./1.0,Psi_2,30),title(psi_2 contour)% contour为等高线函数,其参数与 meshl类似,最后一个参数 30是让等高线总计有 30条% 我们可以知道波函数的取值应该只与 r/a0的值有关。
5、系,所以我们让 a0=1,则 r值也为 r/a0值,而这步化简操作并不会影响到具体的波函数值一一 不足与分析:1. Matlab 导出的 jpg,png 图形是在函数生成之后的图形 编辑器里面的及时观察图形,甚至会受到运行窗口的拉伸缩放影响。2. 其次,如果不加观察命令直接用手拖 动可能较难实现水平与 竖直方向上的观察。3. 以 jpg,png 导出的图形清晰度 较差。一一 自我推销:苯宝宝这么好,生成的代码使用 MATLAB 的发布功能直接复制下来的,很好看吧;上的文档也直接是 word 大家可以直接复制的,多么方便快扔出你的财富值,把苯宝宝带回家吧当然本人也是大一本科,很多东西也是不太会,希望大家如果有疑问可以与我讨论。。