

来源 | 中国公路学报
知圈 | 进“高精度地图社群”,请加微信15221054164,备注地图
引言
高速公路行车速度快、交通构成单一、道路设施相对完善,是实现自动驾驶较好的落地场景。作为自动驾驶的关键技术,行为决策基于环境感知,从众多的可选行动方案中决断出符合其自身行为准则的最佳方案。高速公路行驶常见的行为决策主要是换道行为决策,需要满足实现指定行车路线、保证行车安全高效、决策结果平稳无震荡等要求。
已有的换道行为决策方法通常基于当前的环境状况做出瞬时的换道决定,换道可行性的分析较少考虑取消换道过程的安全性问题,且部分文献需要运动控制的匹配实现换道。为此,针对高速公路场景,论文提出一种基于驾驶人速度不满度的自由换道模型。首先根据驾驶人的速度期望建立了驾驶人速度不满度累积模型,在速度不满累积度超过一定阈值时产生换道意图,能够考虑历史数据的作用避免换道意图的震荡;其次,依据不同车道障碍车的运动状态,设计了两种基于驾驶人速度不满累积度的目标车道选择策略。同时,从车辆间距能否满足换道安全要求的角度分析了换道以及取消换道的可行性,使得换道决策满足安全性的需求。然后,换道决策以目标车道的形式与已有的横纵向运动规划结合实现换道过程。最后,在联合仿真平台和硬件在环平台上进行了换道行为决策算法的验证。
换道行为决策算法
2.1 研究场景与算法模型架构
高速公路一般为同向多车道,车辆在左侧或右侧车道行驶时,目标车道只在当前车道和中间车道中产生;当车辆位于非边缘车道时,可选择的车道有当前车道和左右车道。尽管上述两种情况中可供车辆选择的车道数目不同,它们本质却是相同的,即可供选择的车道包括当前车道和相邻车道。因此,本文为叙述方便将高速公路场景中的道路简化为同向双车道,如图1所示,但本文方法适用于三车道及更多车道。
图1 简化的研究场景
在换道过程中对当前车道前车和相邻车道中本车的前、后方车辆的影响进行考虑。图1中,位于当前车道且处于本车前方的障碍车为
Obs_cf;位于相邻车道且处于本车后方的障碍车为
Obs_ar;位于相邻车道且处于本车前方的障碍车为
Obs_af。
xcf、
xar、
xaf分别表示沿本车航向角方向各障碍车与本车的距离;
vcf、
var、
vaf分别表示各障碍车的速度。换道行为决策模块架构如图2所示。
图2 本文换道行为决策模块架构
2.2 换道行为决策
换道行为是高速公路中的主要驾驶行为,分为强制换道和自由换道两种,本文将主要介绍自由换道行为。
2.2.1车辆换道意图产生
车辆在行驶过程中,往往需要根据实际交通状况调整车速。因此,车辆短时间地以低于期望速度的车速行驶的情况并不少见。此种情况下,尽管车辆未以期望速度行驶,却不足以诱发车辆的换道意图。
通常当车辆持续以较低车速行驶时,速度期望始终得不到满足,车辆换道意图才可能被激发。换道意图的满足需要一定时间,如果由于环境条件不允许导致换道意图不能被满足,则这种意图将持续保持。因此,为了量化地衡量速度期望的不满足程度,采用速度不满累积度作为评价指标。
车辆当前速度小于期望速度时,驾驶人对速度的不满度来自于当前速度与期望速度的差距,故采用期望速度和当前速度差值与期望速度的比值描述当前时刻驾驶人的不满程度,不满度的作用时间为采样周期。当期望速度与当前速度的差距越大,不满度值越大,代表驾驶人心理上对行驶速度不满足程度越高,表达式如(式-1)所示。
c(
k)为第
k个采样点的速度不满度;
vdes为期望速度;
ve为本车速度;
T为采样周期。
当驾驶人的驾驶速度期望没有得到满足时,驾驶人心理上的不满程度会随时间不断增加,故通过驾驶人不满累积度对其进行描述,表达式如下:

其中,
C(
t)为当前时刻的速度不满累积度;
t为当前时刻。
若速度不满累积度C(t)超过所设定的不满累积度阈值,车辆将会产生换道意图。
速度不满累积度与车辆所在车道相关联,当车辆到达目标车道后,车辆的换道意图被满足,因此当前车道的速度不满累积度数值将清零;当速度接近期望速度时,本车的速度期望得到满足,则速度不满累积度也会清零。
2.2.2 车辆换道指令产生
2.2.2.1 目标车道选择
本车产生换道意图是由于对本车道的驾驶条件不满意,所以只有当相邻车道具备更好的驾驶条件才有换道的必要。本文根据速度不满累积度设计了两种目标车道选择策略。
当相邻车道前车速度比当前车道前车速度快时,说明相邻车道具备更好的行车条件,本车在相邻车道行驶时速度期望的被满足程度较高,即本车在相邻车道行驶时的速度不满累积度更低。故此时的目标车道应为相邻车道。
当相邻车道前车速度低于当前车道前车速度时,若相邻车道前车与本车的相对距离较大,相邻车道仍可能为目标车道,故借助预测引擎计算未来一段预测时间tpre内,当前车道和相邻车道的速度不满累积度。
预测引擎基于以下假设:
当前车道和相邻车道的前车均保持匀速运动;
本车已处于稳定跟驰状态,即可认为本车的速度等于当前车道前车的速度vcf,且保持不变;
相邻车道中与本车相对应的位置增加一个虚拟被控车辆,用以计算相邻车道的速度不满累积度,其初始速度与本车相同。它首先匀加速运动,而后匀减速至相邻车道前车的速度vaf,最后匀速跟随其前车行驶。另外,匀加速运动和匀减速运动的加速度绝对值相等。
预测引擎的示意图如图3、4所示。图中
vMAX为虚拟被控车辆的最大速度;
a为虚拟被控车辆变速运动时加速度的绝对值。
图3 预测引擎示意图
图4 预测引擎中车辆速度变化曲线示意图
相邻车道的速度不满累积度计算以虚拟被控车辆预测时间
tpre内的速度变化曲线为依据。虚拟被控车辆的运动模式如图4所示,图中
T1和
T2分别为虚拟被控车辆匀加速和匀减速阶段的用时,可以解得:

其中,
svirtual为虚拟被控车辆匀速跟随前车行驶时两者的安全距离。进一步可得,

至此,虚拟被控车辆在预测时间
tpre内的速度变化曲线已知。
另外,考虑到高速公路的各车道的限速,如当上限为120 km
.h
-1 (33.3m/s),若
vMAX超过120km
.h
-1,则对虚拟被控车辆的速度变化曲线进行修正,修正后的速度变化曲线如图5所示。容易求得保持最大限速的时间
T3的数值,于是虚拟被控车辆在预测时间
tpre内的速度变化曲线也已知。
图5 修正的预测引擎中车辆速度变化曲线示意图
既已知虚拟被控车辆在预测时间
tpre内的速度变化曲线,可计算出虚拟被控车辆的在预测时间内速度不满累积度。根据假设2,容易得到本车在预测时间
tpre内的速度变化曲线(直线),同样可计算出本车在预测时间内的速度不满累积度。
比较本车和虚拟车辆在预测时间内的速度不满累积度,选取速度不满累积度较小的车辆所在车道作为目标车道。
2.2.2.2 换道可行性分析
换道过程包含三个关键的时间节点:换道开始的时刻
t0;车辆到达碰撞点的时刻
t1,此时车辆即将驶离当前车道;车辆施加横向加速度结束的时刻
t2,此时车辆已基本完成换道行为。
图6 本车换道过程示意图
换道可行性分析的经典理论为换道最小安全距离模型。最小安全距离模型利用本车与周边障碍车的距离、速度、加速度信息预测本车在当前场景下是否可以完成安全换道,一般假设本车换道加速度恒定且周边障碍车匀速行驶。
以当前车道前车为例,如图7所示,换道过程中,本车在即将驶离当前车道的时刻可能与当前车道前车发生斜向碰撞,而当本车驶入相邻车道后,两者碰撞的风险将极大减小。本车需要在换道过程中持续判断换道的可行性,
要求在t时刻本车与当前车道前车的相对距离xcf(t)能够保证两车在t1时刻不发生碰撞,则两车之间的最小安全距离表达式为:

其中,、分别为本车当前时刻速度与换道加速度;
w为本车宽度,为本车与车道线夹角,
Lsafety为安全余量,
t0为换道初始时刻。

图7 本车与当前车道前车换道安全距离示意图
同理,可求得本车与目标车道前后车之间的最小安全距离。
图8 取消换道安全距离示意图
取消换道过程的安全性判断视为从目标车道换道至原车道的换道过程,即将目标车道的前车视为当前车道前车,而将原车道前后车视为目标车道前后车。同时认为换道行为进行到一定深度时不再有取消换道的必要。
2.2.3 行为决策流程
行为决策流程的示意图如下:
图9 换道行为决策流程示意图
2.3 换道执行
换道行为决策算法输出的目标车道信息输出到运动规划模块用以引导车辆的运动,如图10所示。运动规划模块分为纵向运动规划和横向运动规划。运动规划算法基于一个统一的衡量周边环境危险程度的势场模型实现。横向运动规划算法采用启发式搜索思想,以期望方向盘转角作为输出。纵向运动规划算法采用数值优化思想,求取期望加速度。行为决策算法得到的目标车道信息决定了横向规划算法的目标节点位置,并确定纵向运动规划跟踪的目标障碍物,车辆的跟车、换道、取消换道等不同行为的切换只需通过目标车道的改变而实现。
图10 局部路径规划框架示意图
仿真验证
算法模型在基于CarSim/PreScan/Simulink联合仿真平台上验证可行性后,在硬件在环平台上进一步进行实验验证。算法模型在MATLAB/Simulink环境下搭建,通过自动代码生成功能得到可执行代码,而后下载至dSPACE公司的快速原型设备MicroAutoBox1513中运行;PreScan和简单环境感知算法在工作站中运行并提供测试场景和运行结果的可视化;CarSim车辆模型对应的Simulink模型同样在自动生成代码后于dSPACE公司的快速原型设备AutoBox1005中运行;三者之间通过CAN通讯,如图11所示。
图11 硬件在环平台通信示意图
仿真场景如图12所示,本车与当前车道前车的初始车速分别为27.78m/s和20m/s,初始间距
Sinit1为80m;相邻车道前后车的速度为25m/s,本车与相邻车道前方车辆距离
Sinit2为25m,与相邻车道后方车辆距离
Sinit3为70m;在本车换道过程中,当前车道前车以0.1g的减速度减速至15m/s,相邻车道两车突然以0.3g的加速度加速至33.33m/s。
图12 硬件在环测试开始时场景示意图
从图13中可以看出由于速度不满累积度逐渐增大超过阈值,故本车产生了向左换道的意图。换道意图产生后,由于向左换道时车道1前车(障碍车2)的速度高于车道0前车(障碍车1),通过选择车道策略1判断目标车道为车道1。
目标车道选择后,算法将分析换道的可行性,即判断本车与障碍车的间距是否大于换道所需的最小安全距离。图14所示为向左换道过程中安全性条件的满足情况,图中纵坐标为实际相对距离与换道安全距离模型计算出最小安全距离(换道意图未产生时数值为0)的差值。数值为正表示安全性条件满足,否则不满足。虚线、点划线和实线分别对应本车与当前车道前车、目标车道前车和目标车道后车之间的安全条件,细实线表示换道意图。换道开始时安全条件满足,本车加速换道,但换道过程中由于目标车道障碍车辆的突然加速导致本车与障碍车3的安全性条件不能满足,故取消换道,目标车道为车道0;此时原车道前车减速,故本车减速跟随原车道前车,等到障碍3驶过本车,换道安全条件再次得到满足时继续换道
。此过程中不满累积度逐渐加大,使得向左换道的意图一直持续并未产生震荡或取消,本车的运动随着目标车道的转换而自动调节。
图13 本车向左换道意图的产生
图14 本车向左换道可行性的分析
图15 目标车道与本车速度变化
结语
本文提出了一种基于驾驶人速度不满度的换道模型,为高速公路自动变道系统的开发提供了一种有效的行为决策方法。
(1)本文根据期望速度建立驾驶人速度不满度累积模型,通过驾驶人速度不满累积度产生换道意图,
能够考虑历史数据的作用而非瞬时的决定,避免换道意图的震荡;同时基于驾驶人速度不满累积度的换道意图产生和目标车道选取
更加符合人类驾驶人换道过程中的驾驶习惯。
(2)本文在换道意图产生之后以及换道过程中(包括取消换道过程)
时刻检测换道行为的可行性,对换道过程的安全考虑较为全面。通过目标车道的转换与运动规划模块结合引导车辆高效安全运动,并在软硬件在环测试中得到验证。
(3)本文的行为决策算法没有考虑环境感知的不确定性,对感知结果的依赖较强;此外不同驾驶风格的驾驶人不满累积度阈值不同,个性化参数设计也是之后提高算法性能的重要方面。
最后,选取一个应用测试视频进行展示说明。
视频中的场景设置为:本车前方有一较慢车辆Obstacle1,其车速为20m/s;相邻车道有速度均为27.78m/s的前后障碍车Obstacle2、Obstacle3;障碍车1、2始终保持匀速,障碍车3在本车换道过程中突然加速。仿真效果如视频所示。
作者简介:陈慧,同济大学汽车学院教授,博士生导师,中国汽车工程学会转向技术分会委员,全国汽车标准化技术委员会转向系统分技术委员会委员。主要研究方向:智能汽车技术、底盘电子控制系统技术
说明:文章观点仅供分享交流,不代表焉知自动驾驶的立场,转载请注明出处,如涉及版权等问题,请您告知(小老虎13636581676微信同),我们将及时沟通处理。
