java if条件 && 圆括号规则_华为上机题库整理.docx

本文分享了华为上机考试策略变化,从VC6.0转至VS2005和JDK1.7,介绍了编程技巧、注意事项,如标准输入输出、代码格式、子串删除算法和约瑟夫环问题的解决方法。

华为上机题库整理

以前上机考试编程工具为C/C++:VC 6.0;Java:eclipse,这次改成C/C++: VS2005(或VC6.0) Java:JDK1.7。由于本人以前学C语言花了一些功夫,相对Java用得上手些,备考时用的是C++;临考前一周接到通知,说是要用VS2005,于是下个软件再加上熟悉一下花了半天时间,手忙脚乱了一阵(建议最好用VS,毕竟有的程序在VC上能调通,在VS上可能运行不通过);2、以往的形式是给你个函数模块,函数名已写好,你只要往里面填代码就行了(华为提供的工程是将Main函数隐藏了的,所以自己不用再添加Main函数)例如: 1. 从两个数组的最后一个元素比较两个数组中不同元素的个数,如有array1[5]={77,21,1,3,5}, array2[3]={1,3,5},从array1[4]与array2[2]比较开始,到array1[2]与array[0]比较结束。这样得出它们不同的元素个数为0,若array1[6]={77,21,1,3,5,7},那么他们不同的元素为3。函数原型为 int compare_array( int len1, int array1[], int len2, int array2[] );其中,len1与len2分别为数组array1[]和array2[]的长度,函数返回值为两个数组不同元素的个数。这次是随你发挥,可以写子函数,也可以只写个main函数(当然main函数是必不可少的)。先在编译环境(即VS2005或JDK1.7)上运行,调通后再复制到考试系统中,检查无误后,点击提交(不过每道题最多只能传五次);.3、以往满分是100分,第一题20分,第二题30分,第三题50分,且前两题为必做题,最后一题作为附加题;现在是满分320(有点像英语四六级改革一样,100分改成710分),第一题60分,第二题100分,第三题160分,且不分什么必做题、附加题,建议拿到题目后最好把题目都浏览一遍,不一定按顺序做,尽会做的先做;有几点需要特别注意:1、一定要按标准输入、输出来编程,且按照考试系统中规定的格式,否则即使从头到尾写的都对,系统将显示格式错误,无法得分;2、最好多试几组测试条例,否则得不全分(本人已经犯过此类失误,希望后人不要重蹈覆辙);3、不要写任何程序提示语句(包括自己人为添加的换行命令),否则该题自动判0分;此外,考试时有不清楚的就问在场的工作人员,不要一个人憋在那里不吭声,浪费的是自己宝贵的时间;个人觉得华为的员工还是挺热心的,我问了不少问题,他们都跟我详细解答的,在此感谢他们的热忱相助。1、删除子串删除子串只要是原串中有相同的子串就删掉,不管有多少个,返回子串个数。自己编的:#include #include #include int del_sub_str ( char *str, char *sub_str,char *result );int main (void){ int count;char result[100];char str[100];char sub_str[100];printf("Please insert your strings!\n");gets(str);printf("Please insert your sub_strings!\n");gets(sub_str); count=del_sub_str(str,sub_str,result);printf("The deleted strings are:\n");puts(result);printf("The num is:%d\n",count);return 0;}int del_sub_str ( char *str, char *sub_str,char *result ){int n;int count=0;char *p=str,*q=sub_str,*r=result;n=strlen(q);while(*p!='\0' ){if(strncmp(p,q,n)==0){count++;p+=n;}else {*r=*p;r++;p++;}}*r='\0';return count;}约瑟夫环约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。#include#includetypedef struct Node// 声明新的类型名(struct)来代替原有的类型名(Node){int

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值