分形图形的计算机绘制论文,基于MATLAB实现分形图形的绘制论文.doc

PAGE

第PAGE 15页

目 录

TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc105852412" 前 言 PAGEREF _Toc105852412 \h 1

HYPERLINK \l "_Toc105852413" 第一章 MATLAB介绍 PAGEREF _Toc105852413 \h 2

HYPERLINK \l "_Toc105852414" 1.1 MATLAB简介 PAGEREF _Toc105852414 \h 2

HYPERLINK \l "_Toc105852415" 1.2 MATLAB语言 PAGEREF _Toc105852415 \h 2

HYPERLINK \l "_Toc105852416" 1.2.1 创建向量、向量元素的访问: PAGEREF _Toc105852416 \h 2

HYPERLINK \l "_Toc105852417" 1.2.2 创建矩阵、矩阵元素的访问 PAGEREF _Toc105852417 \h 3

HYPERLINK \l "_Toc105852418" 1.2.3 流程控制 PAGEREF _Toc105852418 \h 4

HYPERLINK \l "_Toc105852419" 1.3 MATLAB语言的传统优点 PAGEREF _Toc105852419 \h 5

HYPERLINK \l "_Toc105852420" 第二章 分形入门知识 PAGEREF _Toc105852420 \h 6

HYPERLINK \l "_Toc105852421" 2.1 分形理论 PAGEREF _Toc105852421 \h 6

HYPERLINK \l "_Toc105852422" 2.2 分形几何观及其应用 PAGEREF _Toc105852422 \h 7

HYPERLINK \l "_Toc105852423" 第三章 Koch雪花的绘制 PAGEREF _Toc105852423 \h 8

HYPERLINK \l "_Toc105852424" 3.1 von Koch曲线简介 PAGEREF _Toc105852424 \h 8

HYPERLINK \l "_Toc105852425" 3.2 Koch雪花算法设计 PAGEREF _Toc105852425 \h 9

HYPERLINK \l "_Toc105852426" 第四章 Frac_tree绘制 PAGEREF _Toc105852426 \h 11

HYPERLINK \l "_Toc105852427" 第五章 Mandelbort集的绘制 PAGEREF _Toc105852427 \h 13

HYPERLINK \l "_Toc105852428" 5.1 Mandelbort集简介 PAGEREF _Toc105852428 \h 13

HYPERLINK \l "_Toc105852429" 5.2 Mandelbort集算法设计 PAGEREF _Toc105852429 \h 13

HYPERLINK \l "_Toc105852430" 第六章 Julia集的绘制 PAGEREF _Toc105852430 \h 18

HYPERLINK \l "_Toc105852431" 6.1 Julia集简介 PAGEREF _Toc105852431 \h 18

HYPERLINK \l "_Toc105852432" 6.2 Julia集的算法设计 PAGEREF _Toc105852432 \h 18

HYPERLINK \l "_Toc105852433" 6.3 Julia集与Mandelbort集 PAGEREF _Toc105852433 \h 20

HYPERLINK \l "_Toc105852434" 第七章 花篮簇的绘制 PAGEREF _Toc105852434 \h 22

HYPERLINK \l "_Toc105852435" 总 结 PAGEREF _Toc105852435 \h 23

HYPERLINK \l "_Toc105852436" 主要参考文献: PAGEREF _Toc105852436 \h 23

前 言

分形是描述不规则几何形态的有力工具。不言而喻,不规则的几何形态在我们的周围

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值