mifs算法 matlab,文章详细信息

黄伟;李阳;

1:上海电力大学自动化工程学院

摘要(Abstract):

预测燃气轮机的功率变化对确定机组的最优工作点有重要意义,为此,结合当前迅猛发展的人工智能技术,提出一种基于轻梯度提升机(light gradient boosting machine,LightGBM)的燃气轮机功率预测方法。将蒙特卡洛采样(MonteCarlosampling,MCS)和互信息特征选择(mutual information feature selection,MIFS)结合得到MCS-MIFS算法;利用MCS-MIFS算法对复杂的燃气轮机数据进行筛选,得到与功率最相关的属性;将上述属性进行适当处理后,作为Light GBM模型的输入来实现功率预测。以某电厂燃气轮机运行数据进行实验,结果表明通过MCS-MIFS算法选择的变量来预测燃机功率的效果优于MIFS;与梯度提升决策树(gradient boosting decision tree,GBDT)和XGBoost(eXtreme gradient boosting)两种集成模型相比,LightGBM的运行速度更快、预测精度更高、占用内存更小,在处理海量工业数据时具有优势。

关键词(KeyWords):

燃气轮机;功率预测;人工智能;轻梯度提升机;互信息

Abstract:

Keywords:

基金项目(Foundation):

作者(Author):

黄伟;李阳;

Email:

DOI:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值