清理蓝藻的机器人_【中国科学报】水面机器人:水面清洁新利器

【中国科学报】水面机器人:水面清洁新利器

2016-01-11中国科学报 沈春蕾

【字体:大 中 小】

语音播报

风光互补水面机器人

水面污染物自动清理机器人效果图

溢油自动去除水面机器人效果图

日前,中国科学院合肥智能机械研究所(以下简称智能所)纳米材料与环境检测研究室研发出“风光互补”自主式水面机器人。研究室副主任余道洋告诉告诉《中国科学报》记者:“这款水面机器人的动力系统、自动控制、通讯数据传输以及智能决策等技术水平达到了国内领先。”

风光互补动力

目前,国内外水面机器人的主要用途有水采样及水质监测、水下地貌测绘和水文测量、水面垃圾清理、巡逻及救援等。

余道洋介绍,水面自动清洁机器人由水面漂浮物自动回收装置和水面机器人组成,主要应用于海洋、湖泊、河道、滩涂,景区内的湖泊、池塘的固体垃圾、浮萍等清理以及危险区域进行远程作业。相对于无人船,水面机器人的关键技术是动力系统、推进系统、自动控制和智能决策等。

已经面世的“领航者”号无人船处于国内民用水面机器人领先水平。该无人船融合船舶、通信、自动化、机器人控制、远程监控、网络化系统等技术,实现了自主导航、智能避障、远距离通信、视频实时传输和网络化监控等功能。

然而,续航动力是束缚水面机器人发展的一大技术难题。余道洋指出,现

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值