快速傅里叶变换-基4时间抽取FFT 算法matlab 实现
作者姓名:李林
摘要:FFT ( 快速傅里叶变换) 算法与DFT (离散傅里叶变换) 算法比较, 其运算量显著减少, 用计算机实现时速度大为提高。但FFT 过程所需的运算量仍较可观, 常给数字信号的实时处理带来困难,理论和实践表明, 若要加快FFT 算法在计算机上的实现, 关键是得设法减少FFT 过程在乘法运算上的时间开销。若改进算法, 减少过程中的乘法次数, 则无疑能加快FFT 的实现 。
通常的FFT 幂法都是“基2 分解法” , 即长度为N 的DFT 序列由两个长度为2 / N 的DFT 序列的组合表示; 而这两个长度为2 / N 的DFT 序列各自又分别由两个长度为4 / N 的DFT 序列的组合表示 , 按照这一做法对序列进行反复分解, 直到每个序列的长度等于2为止。这个分解、组合过程如同一棵标准二叉树。按分解的逆过程进行组合运算便得到所要求的频谱序列)n ( F ,
... , l , 0 (n ,1- N ) 整个变换过程共需要进行 N log 2 / N 2次复数乘法运算。参考上述的分解、组合方法, 对序列进行“ 基4 分解” , 即长度为N 的DFT 序列由四个长度为4 / N 的DFT 序列组合表示。
关键词: FFT 基2分解法 基4分解 运算时间和精度