1. 工具箱概述
MATLAB图像处理工具箱提供了一套完整的算法和工具,用于图像处理、分析和可视化。其核心功能包括:
- 图像增强:对比度调整、去噪、锐化
- 图像分割:阈值分割、边缘检测、区域生长
- 形态学操作:膨胀、腐蚀、开闭运算
- 几何变换:旋转、缩放、仿射变换
- 深度学习集成:与Deep Learning Toolbox结合实现图像分类、目标检测
适用领域:医学影像、工业检测、自动驾驶、卫星图像分析等。
2. 安装与配置
安装步骤
- 打开MATLAB,点击菜单栏的附加功能。
- 搜索 Image Processing Toolbox 并安装。
- 验证安装:命令行输入
ver
,查看已安装工具箱列表。
配置建议
- 使用MATLAB R2020b及以上版本以支持最新深度学习功能。
3. 基础操作
一、工具箱核心模块构成
-
图像I/O与显示模块
- 支持格式:
imread/imwrite
(JPEG/PNG/TIFF/DICOM) - 浏览器模式:
imageBrowser
交互式查看与标注 - 医学图像专精:
dicomread/dicomwrite
+ DICOM元数据解析
- 支持格式:
-
像素级操作工具箱
- 裁剪工具:
imcrop
(手动/坐标参数模式) - 通道分离:
imsplit
处理多光谱卫星图像 - 矩阵归一化:
im2double
与im2uint8
量化陷阱解析
- 裁剪工具:
-
图形界面工具集
- ROI标注神器:
drawrectangle
/drawpolygon
实时坐标获取 - 交互式阈值工具:
imbinarize
带滑动条的阈值调试
- ROI标注神器:
二、核心算法库详解
-
滤波与降噪工具箱
- 内置滤波器:
imgaussfilt
(高斯)、medfilt2
(中值) - 自定义卷积:
fspecial('average', [5 5])
+imfilter
- 高级去噪:
wiener2
自适应滤波的噪声估计原理
- 内置滤波器:
-
形态学操作库
- 结构元素设计:
strel('disk',5)
vsstrel('square',3)
- 开闭运算组合:
imopen
+imclose
消除显微图像噪声 - 高级形态学:
bwmorph
骨架提取(神经血管分析)
- 结构元素设计:
-
变换域工具箱
- 傅里叶变换:
fft2
频移后显示(fftshift
) - 小波工具箱:
wavedec2
实现JPEG2000压缩 - 雷达图像处理:
radon
变换逆向投影算法
- 傅里叶变换:
四、行业场景工具箱组合
-
医学影像分析
% DICOM到三维重建 vol = dicomreadVolume('CT_series'); sliceViewer(vol); % 交互式多平面查看
- 配准工具:
imregtform
实现MRI-PET对齐
- 配准工具:
-
工业视觉检测
- 模板匹配:
normxcorr2
实现零件定位 - 缺陷检测:结合
edge
+regionprops
分析
- 模板匹配:
-
深度学习扩展
- 数据增强:
imageDataAugmenter
扩增训练集 - 模型部署:exportONNXNetwork转换训练好的分类器
- 数据增强: