高等数学张宇18讲 第十八讲 第二型曲线曲面积分

目录

例题十八

例18.4  已知平面区域 D = { ( x , y ) ∣ 0 ⩽ x ⩽ π , 0 ⩽ y ⩽ π } D=\{(x,y)|0\leqslant x\leqslant\pi,0\leqslant y\leqslant\pi\} D={(x,y)0xπ,0yπ} L L L D D D的正向边界。试证: ( 2 ) ∮ L x e sin ⁡ y d y − y e − sin ⁡ x d x ⩾ 5 2 π 2 . (2)\displaystyle\oint_Lxe^{\sin y}\mathrm{d}y-ye^{-\sin x}\mathrm{d}x\geqslant\cfrac{5}{2}\pi^2. (2)Lxesinydyyesinxdx25π2.

  由于 e t + e − t = 2 ∑ n = 0 ∞ t 2 n ( 2 n ) ! ⩾ 2 ( 1 + t 2 2 ! ) = 2 + t 2 e^t+e^{-t}=2\sum\limits_{n=0}^\infty\cfrac{t^{2n}}{(2n)!}\geqslant2\left(1+\cfrac{t^2}{2!}\right)=2+t^2 et+et=2n=0(2n)!t2n2(1+2!t2)=2+t2,于是 e sin ⁡ x + e − sin ⁡ x ⩾ 2 + sin ⁡ 2 x e^{\sin x}+e^{-\sin x}\geqslant2+\sin^2x esinx+esinx2+sin2x,故
∮ L x e sin ⁡ y d y − y e − sin ⁡ x d x = ∬ D ( e sin ⁡ y + e − sin ⁡ x ) d σ = ∬ D ( e sin ⁡ x + e − sin ⁡ x ) d σ ⩾ ∬ D ( 2 + sin ⁡ 2 x ) d σ = ∬ D 2 d σ + ∬ D sin ⁡ 2 x d σ = 2 π 2 + 1 2 π 2 = 5 2 π . \begin{aligned} \displaystyle\oint_Lxe^{\sin y}\mathrm{d}y-ye^{-\sin x}\mathrm{d}x&=\displaystyle\iint\limits_{D}(e^{\sin y}+e^{-\sin x})\mathrm{d}\sigma=\displaystyle\iint\limits_{D}(e^{\sin x}+e^{-\sin x})\mathrm{d}\sigma\\ &\geqslant\displaystyle\iint\limits_{D}(2+\sin^2x)\mathrm{d}\sigma=\displaystyle\iint\limits_{D}2\mathrm{d}\sigma+\displaystyle\iint\limits_{D}\sin^2x\mathrm{d}\sigma\\ &=2\pi^2+\cfrac{1}{2}\pi^2=\cfrac{5}{2}\pi. \end{aligned} Lxesinydyyesinxdx=D(esiny+esinx)dσ=D(esinx+esinx)dσD(2+sin2x)dσ=D2dσ+Dsin2xdσ=2π2+21π2=25π.
这道题主要利用了轮换对称性求解

例18.9  设 I = ∬ Σ x d y d z + y d x d z + z d x d y ( x 2 + y 2 + z 2 ) 3 2 I=\displaystyle\iint\limits_{\Sigma}\cfrac{x\mathrm{d}y\mathrm{d}z+y\mathrm{d}x\mathrm{d}z+z\mathrm{d}x\mathrm{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} I=Σ(x2+y2+z2)23xdydz+ydxdz+zdxdy,试依次对以下四个曲面计算 I I I的值。

(1) Σ \Sigma Σ是上半球面 z = R 2 − x 2 − y 2 z=\sqrt{R^2-x^2-y^2} z=R2x2y2 的上侧;

(2) Σ \Sigma Σ x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的外侧 ( a , b , c > 0 ) (a,b,c>0) (a,b,c>0)

(3) Σ \Sigma Σ z = 2 − x 2 − y 2 z=2-x^2-y^2 z=2x2y2 z ⩾ 0 z\geqslant0 z0部分的上侧;

(4) Σ \Sigma Σ z = 2 − x 2 − y 2 z=2-x^2-y^2 z=2x2y2 z ⩾ − 2 z\geqslant-2 z2部分的上侧。

  设 z = x 2 + y 2 + z 2 , P = x r 3 , Q = y r 3 , R = z r 3 , ∂ P ∂ x = r 3 − 3 x r 2 ⋅ x r r 6 = 1 r 3 − 3 x 2 r 5 z=\sqrt{x^2+y^2+z^2},P=\cfrac{x}{r^3},Q=\cfrac{y}{r^3},R=\cfrac{z}{r^3},\cfrac{\partial P}{\partial x}=\cfrac{r^3-3xr^2\cdot\cfrac{x}{r}}{r^6}=\cfrac{1}{r^3}-\cfrac{3x^2}{r^5} z=x2+y2+z2 ,P=r3x,Q=r3y,R=r3z,xP=r6r33xr2rx=r31r53x2
  同理 ∂ Q ∂ y = 1 r 3 − 3 y 2 r 5 , ∂ R ∂ z = 1 r 3 − 3 z 2 r 5 \cfrac{\partial Q}{\partial y}=\cfrac{1}{r^3}-\cfrac{3y^2}{r^5},\cfrac{\partial R}{\partial z}=\cfrac{1}{r^3}-\cfrac{3z^2}{r^5} yQ=r31r53y2,zR=r31r53z2,所以 ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \cfrac{\partial P}{\partial x}+\cfrac{\partial Q}{\partial y}+\cfrac{\partial R}{\partial z}=0 xP+yQ+zR=0
  (1)将 Σ \Sigma Σ的方程代入被积函数分母中,得 I = 1 R 3 ∬ Σ x d y d z + y d z d x + z d x d y I=\cfrac{1}{R^3}\displaystyle\iint\limits_{\Sigma}x\mathrm{d}y\mathrm{d}z+y\mathrm{d}z\mathrm{d}x+z\mathrm{d}x\mathrm{d}y I=R31Σxdydz+ydzdx+zdxdy
  补 Σ 0 : z = 0 , x 2 + y 2 ⩽ R 2 \Sigma_0:z=0,x^2+y^2\leqslant R^2 Σ0:z=0,x2+y2R2,方向向下,又 Ω \Omega Ω是由 Σ \Sigma Σ Σ 0 \Sigma_0 Σ0围成的半球体,则
I = 1 R 3 ( ∯ Σ + Σ 0 − ∬ Σ 0 ) = 1 R 3 ( ∭ Ω 3 d v − 0 ) = 3 R 3 ⋅ 2 π 3 R 3 = 2 π . I=\cfrac{1}{R^3}\left(\quad\displaystyle\oiint\limits_{\Sigma+\Sigma_0}-\displaystyle\iint\limits_{\Sigma_0}\right)=\cfrac{1}{R^3}\left(\displaystyle\iiint\limits_{\Omega}3\mathrm{d}v-0\right)=\cfrac{3}{R^3}\cdot\cfrac{2\pi}{3}R^3=2\pi. I=R31Σ+Σ0 Σ0=R31Ω3dv0=R3332πR3=2π.
  (2)作一球面 Σ ρ : x 2 + y 2 + z 2 = ρ 2 \Sigma_\rho:x^2+y^2+z^2=\rho^2 Σρ:x2+y2+z2=ρ2,方向向内,且取 ρ \rho ρ充分小使得 Σ ρ \Sigma_\rho Σρ位于 Σ \Sigma Σ的内部,又记 Σ \Sigma Σ Σ ρ \Sigma_\rho Σρ所围区域为 Ω \Omega Ω Σ ρ \Sigma_\rho Σρ所围区域为 Ω ρ \Omega_\rho Ωρ,则 I = ∬ Σ = ∯ Σ + Σ ρ − ∯ Σ ρ I=\displaystyle\iint\limits_{\Sigma}=\displaystyle\oiint\limits_{\Sigma+\Sigma_\rho}-\displaystyle\oiint\limits_{\Sigma_\rho} I=Σ=Σ+Σρ Σρ
  根据高斯公式, ∯ Σ + Σ ρ = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v = ∭ Ω 0 d v = 0 \displaystyle\oiint\limits_{\Sigma+\Sigma_\rho}=\displaystyle\iiint\limits_{\Omega}\left(\cfrac{\partial P}{\partial x}+\cfrac{\partial Q}{\partial y}+\cfrac{\partial R}{\partial z}\right)\mathrm{d}v=\displaystyle\iiint\limits_{\Omega}0\mathrm{d}v=0 Σ+Σρ =Ω(xP+yQ+zR)dv=Ω0dv=0。在 Σ ρ \Sigma_\rho Σρ x 2 + y 2 + z 2 = ρ 2 x^2+y^2+z^2=\rho^2 x2+y2+z2=ρ2,并注意方向向内,则 ∯ Σ ρ = ∯ Σ ρ x d y d z + y d x d z + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = 1 ρ 3 ∯ Σ ρ x d y d z + y d x d z + z d x d y = − 1 ρ 3 ∭ Ω ρ 3 d v = − 3 ρ 3 ⋅ 4 π 3 ρ 3 = − 4 π \displaystyle\oiint\limits_{\Sigma_\rho}=\displaystyle\oiint\limits_{\Sigma_\rho}\cfrac{x\mathrm{d}y\mathrm{d}z+y\mathrm{d}x\mathrm{d}z+z\mathrm{d}x\mathrm{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=\cfrac{1}{\rho^3}\displaystyle\oiint\limits_{\Sigma_\rho}x\mathrm{d}y\mathrm{d}z+y\mathrm{d}x\mathrm{d}z+z\mathrm{d}x\mathrm{d}y=-\cfrac{1}{\rho^3}\displaystyle\iiint\limits_{\Omega_\rho}3\mathrm{d}v=-\cfrac{3}{\rho^3}\cdot\cfrac{4\pi}{3}\rho^3=-4\pi Σρ =Σρ (x2+y2+z2)23xdydz+ydxdz+zdxdy=ρ31Σρ xdydz+ydxdz+zdxdy=ρ31Ωρ3dv=ρ3334πρ3=4π
  故 I = 0 − ( − 4 π ) = 4 π I=0-(-4\pi)=4\pi I=0(4π)=4π
  (3)作上半球面 Σ ρ : z = ρ 2 − x 2 − y 2 \Sigma_\rho:z=\sqrt{\rho^2-x^2-y^2} Σρ:z=ρ2x2y2 ,方向向下, ρ \rho ρ充分小使得 Σ ρ \Sigma_\rho Σρ Σ \Sigma Σ的内部,再补一平面 Σ 0 : z = 0 , ρ 2 ⩽ x 2 + y 2 ⩽ 2 \Sigma_0:z=0,\rho^2\leqslant x^2+y^2\leqslant2 Σ0:z=0,ρ2x2+y22,方向向下,设由 Σ , Σ ρ \Sigma,\Sigma_\rho Σ,Σρ Σ 0 \Sigma_0 Σ0共同围成的立体区域记为 Ω \Omega Ω,则 I = ∬ Σ = ∯ Σ + Σ ρ − ∬ Σ ρ − ∬ Σ 0 I=\displaystyle\iint\limits_{\Sigma}=\displaystyle\oiint\limits_{\Sigma+\Sigma_\rho}-\displaystyle\iint\limits_{\Sigma_\rho}-\displaystyle\iint\limits_{\Sigma_0} I=Σ=Σ+Σρ ΣρΣ0
  由高斯公式,第一项 = 0 =0 =0。由(1), ∬ Σ ρ = − 2 π ( Σ ρ 方向向下 ) , ∬ Σ 0 = ∬ Σ 0 x d y d z + y d x d z + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = 0. \displaystyle\iint\limits_{\Sigma_\rho}=-2\pi(\Sigma_\rho\text{方向向下}),\displaystyle\iint\limits_{\Sigma_0}=\displaystyle\iint\limits_{\Sigma_0}\cfrac{x\mathrm{d}y\mathrm{d}z+y\mathrm{d}x\mathrm{d}z+z\mathrm{d}x\mathrm{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=0. Σρ=2π(Σρ方向向下),Σ0=Σ0(x2+y2+z2)23xdydz+ydxdz+zdxdy=0.
  故 I = 0 − ( − 2 π ) = 2 π I=0-(-2\pi)=2\pi I=0(2π)=2π
  (4)补平面 Σ 0 : z = − 2 , x 2 + y 2 ⩽ 4 \Sigma_0:z=-2,x^2+y^2\leqslant4 Σ0:z=2,x2+y24,方向向下;作球面 Σ ρ : x 2 + y 2 + z 2 = ρ 2 \Sigma_\rho:x^2+y^2+z^2=\rho^2 Σρ:x2+y2+z2=ρ2,方向向内,且 ρ \rho ρ充分小,使得 Σ ρ \Sigma_\rho Σρ包含在 Σ \Sigma Σ之内。又将 Σ ρ \Sigma_\rho Σρ所围球体区域记为 Ω ρ \Omega_\rho Ωρ Σ \Sigma Σ Σ ρ , Σ 0 \Sigma_\rho,\Sigma_0 Σρ,Σ0所围立体记为 Ω \Omega Ω,则 I = ∬ Σ = ∯ Σ + Σ ρ − ∯ Σ ρ − ∬ Σ 0 I=\displaystyle\iint\limits_{\Sigma}=\displaystyle\oiint\limits_{\Sigma+\Sigma_\rho}-\displaystyle\oiint\limits_{\Sigma_\rho}-\displaystyle\iint\limits_{\Sigma_0} I=Σ=Σ+Σρ Σρ Σ0
  根据高斯公式,第一项为 0 0 0。由(2), ∯ Σ ρ = − 4 π \displaystyle\oiint\limits_{\Sigma_\rho}=-4\pi Σρ =4π。最后,
∬ Σ 0 = ∬ Σ 0 − 2 d x d y ( x 2 + y 2 + 4 ) 3 2 = − ∬ D x y − 2 d x d y ( x 2 + y 2 + 4 ) 3 2 = 2 ∫ 0 2 π d θ ∫ 0 2 r d r ( r 2 + 4 ) 3 2 = − 4 π 1 r 2 + 4 ∣ 0 2 = ( 2 − 2 ) π , \begin{aligned} \displaystyle\iint\limits_{\Sigma_0}&=\displaystyle\iint\limits_{\Sigma_0}\cfrac{-2\mathrm{d}x\mathrm{d}y}{(x^2+y^2+4)^{\frac{3}{2}}}=-\displaystyle\iint\limits_{D_{xy}}\cfrac{-2\mathrm{d}x\mathrm{d}y}{(x^2+y^2+4)^{\frac{3}{2}}}\\ &=2\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^2_0\cfrac{r\mathrm{d}r}{(r^2+4)^{\frac{3}{2}}}=-4\pi\cfrac{1}{\sqrt{r^2+4}}\biggm\vert^2_0\\ &=(2-\sqrt{2})\pi, \end{aligned} Σ0=Σ0(x2+y2+4)232dxdy=Dxy(x2+y2+4)232dxdy=202πdθ02(r2+4)23rdr=4πr2+4 102=(22 )π,
  故 I = 0 − ( − 4 π ) − ( 2 − 2 ) π = ( 2 + 2 ) π I=0-(-4\pi)-(2-\sqrt{2})\pi=(2+\sqrt{2})\pi I=0(4π)(22 )π=(2+2 )π。(这道题主要利用了第一型曲线曲面积分和第二型曲线曲面积分的综合运用求解

习题十八

18.6设 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x,y,z),Q(x,y,z),R(x,y,z) P(x,y,z),Q(x,y,z),R(x,y,z)都是连续函数, Σ \Sigma Σ是一光滑曲面,面积为 S S S M M M P 2 + Q 2 + R 2 \sqrt{P^2+Q^2+R^2} P2+Q2+R2 Σ \Sigma Σ上的最大值,证明 ∣ ∬ Σ P d y d z + Q d x d z + R d x d y ∣ ⩽ M S \left|\displaystyle\iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y\right|\leqslant MS ΣPdydz+Qdxdz+RdxdyMS

  由于要证的不等式中出现了曲面的积分,所以应将左端的第二型曲面积分化为对面积的曲面积分,设 n ∘ = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \bm{n}^\circ=(\cos\alpha,\cos\beta,\cos\gamma) n=(cosα,cosβ,cosγ)为曲面 Σ \Sigma Σ上选定侧的单位向量,则
∬ Σ P d y d z + Q d x d z + R d x d y = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S = ∬ Σ ( P , Q , R ) ⋅ n ∘ d S . \begin{aligned} \displaystyle\iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y&=\displaystyle\iint\limits_{\Sigma}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S\\ &=\displaystyle\iint\limits_{\Sigma}(P,Q,R)\cdot\bm{n}^\circ\mathrm{d}S. \end{aligned} ΣPdydz+Qdxdz+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dS=Σ(P,Q,R)ndS.
  因为 ∣ ( P , Q , R ) ⋅ n ∘ ∣ = ∣ ( P , Q , R ) ∣ ⋅ ∣ n ∘ ∣ cos ⁡ φ ⩽ ∣ ( P , Q , R ) ∣ = P 2 + Q 2 + R 2 ( φ 是 ( P , Q , R ) 与 n ∘ 的夹角 ) |(P,Q,R)\cdot\bm{n}^\circ|=|(P,Q,R)|\cdot|\bm{n}^\circ|\cos\varphi\leqslant|(P,Q,R)|=\sqrt{P^2+Q^2+R^2}(\varphi\text{是}(P,Q,R)\text{与}\bm{n}^\circ\text{的夹角}) (P,Q,R)n=(P,Q,R)ncosφ(P,Q,R)=P2+Q2+R2 (φ(P,Q,R)n的夹角),因此
∣ ∬ Σ P d y d z + Q d x d z + R d x d y ∣ = ∣ ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S ∣ ⩽ ∬ Σ ∣ P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ∣ d S ⩽ ∬ Σ P 2 + Q 2 + R 2 d S ⩽ M S . \begin{aligned} &\left|\displaystyle\iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y\right|=\left|\displaystyle\iint\limits_{\Sigma}(P\cos\alpha+Q\cos\beta+R\cos\gamma)\mathrm{d}S\right|\\ \leqslant&\displaystyle\iint\limits_{\Sigma}|P\cos\alpha+Q\cos\beta+R\cos\gamma|\mathrm{d}S\leqslant\displaystyle\iint\limits_{\Sigma}\sqrt{P^2+Q^2+R^2}\mathrm{d}S\leqslant MS. \end{aligned} ΣPdydz+Qdxdz+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dSΣPcosα+Qcosβ+RcosγdSΣP2+Q2+R2 dSMS.
这道题主要利用了第二型曲面积分的定义求解

18.7设空间曲线 L : { x = x 2 + 2 y 2 , z = 6 − 2 x 2 − y 2 , L:\begin{cases}x=x^2+2y^2,\\z=6-2x^2-y^2,\end{cases} L:{x=x2+2y2,z=62x2y2, z z z轴正向向负向看去为逆时针方向。求 I = ∮ L ( z 2 − y ) d x + ( x 2 − z ) d y + ( x − y 2 ) d z . I=\displaystyle\oint_L(z^2-y)\mathrm{d}x+(x^2-z)\mathrm{d}y+(x-y^2)\mathrm{d}z. I=L(z2y)dx+(x2z)dy+(xy2)dz.


I = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z z 2 − y x 2 − z x − y 2 ∣ = ∬ Σ ( − 2 y + 1 ) d y d z + ( 2 z − 1 ) d z d x + ( 2 x + 1 ) d x d y , \begin{aligned} I&=\displaystyle\iint\limits_{\Sigma}\begin{vmatrix}\mathrm{d}y\mathrm{d}z&\mathrm{d}z\mathrm{d}x&\mathrm{d}x\mathrm{d}y\\\cfrac{\partial}{\partial x}&\cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\z^2-y&x^2-z&x-y^2\end{vmatrix}\\ &=\displaystyle\iint\limits_{\Sigma}(-2y+1)\mathrm{d}y\mathrm{d}z+(2z-1)\mathrm{d}z\mathrm{d}x+(2x+1)\mathrm{d}x\mathrm{d}y, \end{aligned} I=Σdydzxz2ydzdxyx2zdxdyzxy2=Σ(2y+1)dydz+(2z1)dzdx+(2x+1)dxdy,
  其中 Σ \Sigma Σ为以 L L L为边界的任一空间曲面,考虑转换公式, Σ \Sigma Σ x O y xOy xOy面投影,易得 D x y : x 2 + y 2 ⩽ 2 D_{xy}:x^2+y^2\leqslant2 Dxy:x2+y22,则
I = ∬ Σ [ ( − 2 y + 1 ) ⋅ 4 x + ( 2 z − 1 ) ⋅ 2 y + ( 2 x + 1 ) ] d x d y = ∬ Σ [ ( − 2 y + 1 ) ⋅ 4 x + ( 11 − 4 x 2 − 2 y 2 ) ⋅ 2 y + ( 2 x + 1 ) ] d x d y = 2 π . \begin{aligned} I&=\displaystyle\iint\limits_{\Sigma}[(-2y+1)\cdot4x+(2z-1)\cdot2y+(2x+1)]\mathrm{d}x\mathrm{d}y\\ &=\displaystyle\iint\limits_{\Sigma}[(-2y+1)\cdot4x+(11-4x^2-2y^2)\cdot2y+(2x+1)]\mathrm{d}x\mathrm{d}y=2\pi. \end{aligned} I=Σ[(2y+1)4x+(2z1)2y+(2x+1)]dxdy=Σ[(2y+1)4x+(114x22y2)2y+(2x+1)]dxdy=2π.
  由于 Σ \Sigma Σ可任取,以 L L L为边界即可,此处 Σ \Sigma Σ z = 6 − 2 x 2 − y 2 z=6-2x^2-y^2 z=62x2y2在交线之上的部分。(这道题主要利用了斯托克斯公式求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值