海康监控系统行为识别服务器,基于海康视频监控系统的目标检测和跟踪

摘要:

随着人民生活质量的迅速提高,工业生产、家居生活服务、公共场所等各个领域的正常工作都要求智能视频监控系统的协助,并且对于智能监控系统的性能要求也越来越高。所谓智能视频监控系统就是指在不需要人为帮助的情况下,自动的对监控摄像头获取的相关信号利用图像处理、模式识别和机器学习等相关工具进行处理,主要包括目标检测跟踪、目标动作识别和行为分析等。目前市场上的已经投入使用的多数视频监控系统都没有智能分析能力或者智能分析能力不足,因此在不增加硬件成本和大大减少人力成本的前提下,努力提升现有视频监控系统的性能,使其尽量达到先进监控系统所具有的功能,是一个非常重要的研究课题。 本课题主要是解决实验室现有的海康视频监控系统的智能化分析功能不足的问题。主要内容是利用提出的目标检测跟踪算法对获得的海康远程实时视频流进行目标检测和定位,进而提取感兴趣目标的有关特征,比如目标轮廓和轨迹,从而为目标的动作识别和行为分析打下坚实基础。最终目标是使该视频监控系统逐渐具有现有的先进智能视频监控系统所具有的所有智能分析功能。 首先利用海康提供的SDK中的相关接口函数获得通过网络传输的实时视频流,并将获取的YV12视频格式转为常用的RGB格式,然后利用时间和空间信息相结合的背景建模方法进行目标检测。根据实时视频的前N帧为视频图像中的每个像素点建立一个由多个码字组成的码本背景模型,这个模型充分的描述了像素序列的时间信息;同样利用这N帧视频图像根据局部不变三元模式建立像素空间纹理背景模型。对于当前帧的某个像素点,当且仅当它同时满足码本和纹理背景模型时,此点为背景点,否则判为前景点。其中码本背景模型利用增加和删除码字的形式更新背景,纹理背景模型采用传统的背景更新方法进行背景更新。最后本文还利用检测结果绘制了目标的轮廓和运动轨迹。 本文将目标跟踪的研究看作目标和背景二分类的问题。首先根据目标检测结果或手动标注进行目标位置初始化,在初始化目标窗口周围采集正负样本并提取正负样本的尺度不变矩形特征和Hog特征训练朴素贝叶斯分类器,然后在下一帧目标模板周围采集待检测的目标矩形样本。最后将贝叶斯分类器结果最大样本区域的作为当前目标位置,从而实现了当前帧到下一帧的目标跟踪。其中分类器在跟踪过程中是不断更新的。 本文在提升视频监控系统分性能方面仅做了基础性的目标检测和跟踪工作,对于目标的动作识别和行为分析仍需要进一步研究。

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值