LeetCode 04寻找两个正序数组的中位数(困难)二分法
呕心沥血的一个题解, 点赞关注在看,一键三联,一起加入我们打卡!。题目描述:
呕心沥血的一个题解,点赞关注收藏,一键三联,一起加入我们打卡!
题目描述:
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
归并法(O(m+n))
分析之前小吐槽一句,这题自己真的没想到O(log(m+n))的方法,只能想到O(m+n)的归并,没想到怎么去使用二分,后来看了题解也是才明白。但也算自己理解了和大家分享一下。
对于这个问题或许本身不难,但是可能难在O(log(m+n))的时间复杂度上。
如果真的无法想到好的方法,先想着过关,该用什么方法呢?
法一暴力法:
可以将两个数组添加到一个总的数组中,然后给这个数组进行排序。正常的排序是O(nlogn)的时间复杂度。排序之后根据奇数偶数取中位数即可。
法二归并法:
给的两个数组本身是有序的,想必熟悉归并排序的朋友们应该能一下就想出来这个方法,两个有序的.只需按照以下流程即可完成归并:
待归并的两个数组