python多进程编程_Python多进程编程

序. multiprocessing

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

1. Process

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。

方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

例1.1:创建函数并将其作为单个进程

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker(interval):

n = 5

while n > 0:

print("The time is {0}".format(time.ctime()))

time.sleep(interval)

n -= 1

if __name__ == "__main__":

p = multiprocessing.Process(target = worker, args = (3,))

p.start()

print "p.pid:", p.pid

print "p.name:", p.name

print "p.is_alive:", p.is_alive()

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

例1.2:创建函数并将其作为多个进程

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker_1(interval):

print "worker_1"

time.sleep(interval)

print "end worker_1"

def worker_2(interval):

print "worker_2"

time.sleep(interval)

print "end worker_2"

def worker_3(interval):

print "worker_3"

time.sleep(interval)

print "end worker_3"

if __name__ == "__main__":

p1 = multiprocessing.Process(target = worker_1, args = (2,))

p2 = multiprocessing.Process(target = worker_2, args = (3,))

p3 = multiprocessing.Process(target = worker_3, args = (4,))

p1.start()

p2.start()

p3.start()

print("The number of CPU is:" + str(multiprocessing.cpu_count()))

for p in multiprocessing.active_children():

print("child p.name:" + p.name + "\tp.id" + str(p.pid))

print "END!!!!!!!!!!!!!!!!!"

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

例1.3:将进程定义为类

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

class ClockProcess(multiprocessing.Process):

def __init__(self, interval):

multiprocessing.Process.__init__(self)

self.interval = interval

def run(self):

n = 5

while n > 0:

print("the time is {0}".format(time.ctime()))

time.sleep(self.interval)

n -= 1

if __name__ == '__main__':

p = ClockProcess(3)

p.start()

48304ba5e6f9fe08f3fa1abda7d326ab.png

注:进程p调用start()时,自动调用run()

结果

例1.4:daemon程序对比结果

#1.4-1 不加daemon属性

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker(interval):

print("work start:{0}".format(time.ctime()));

time.sleep(interval)

print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":

p = multiprocessing.Process(target = worker, args = (3,))

p.start()

print "end!"

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

#1.4-2 加上daemon属性

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker(interval):

print("work start:{0}".format(time.ctime()));

time.sleep(interval)

print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":

p = multiprocessing.Process(target = worker, args = (3,))

p.daemon = True

p.start()

print "end!"

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

注:因子进程设置了daemon属性,主进程结束,它们就随着结束了。

#1.4-3 设置daemon执行完结束的方法

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker(interval):

print("work start:{0}".format(time.ctime()));

time.sleep(interval)

print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":

p = multiprocessing.Process(target = worker, args = (3,))

p.daemon = True

p.start()

p.join()

print "end!"

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

2. Lock

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import sys

def worker_with(lock, f):

with lock:

fs = open(f, 'a+')

n = 10

while n > 1:

fs.write("Lockd acquired via with\n")

n -= 1

fs.close()

def worker_no_with(lock, f):

lock.acquire()

try:

fs = open(f, 'a+')

n = 10

while n > 1:

fs.write("Lock acquired directly\n")

n -= 1

fs.close()

finally:

lock.release()

if __name__ == "__main__":

lock = multiprocessing.Lock()

f = "file.txt"

w = multiprocessing.Process(target = worker_with, args=(lock, f))

nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))

w.start()

nw.start()

print "end"

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果(输出文件)

3. Semaphore

Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def worker(s, i):

s.acquire()

print(multiprocessing.current_process().name + "acquire");

time.sleep(i)

print(multiprocessing.current_process().name + "release\n");

s.release()

if __name__ == "__main__":

s = multiprocessing.Semaphore(2)

for i in range(5):

p = multiprocessing.Process(target = worker, args=(s, i*2))

p.start()

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

4. Event

Event用来实现进程间同步通信。

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def wait_for_event(e):

print("wait_for_event: starting")

e.wait()

print("wairt_for_event: e.is_set()->" + str(e.is_set()))

def wait_for_event_timeout(e, t):

print("wait_for_event_timeout:starting")

e.wait(t)

print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))

if __name__ == "__main__":

e = multiprocessing.Event()

w1 = multiprocessing.Process(name = "block",

target = wait_for_event,

args = (e,))

w2 = multiprocessing.Process(name = "non-block",

target = wait_for_event_timeout,

args = (e, 2))

w1.start()

w2.start()

time.sleep(3)

e.set()

print("main: event is set")

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

5. Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

def writer_proc(q):

try:

q.put(1, block = False)

except:

pass

def reader_proc(q):

try:

print q.get(block = False)

except:

pass

if __name__ == "__main__":

q = multiprocessing.Queue()

writer = multiprocessing.Process(target=writer_proc, args=(q,))

writer.start()

reader = multiprocessing.Process(target=reader_proc, args=(q,))

reader.start()

reader.join()

writer.join()

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

6. Pipe

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。

send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def proc1(pipe):

while True:

for i in xrange(10000):

print "send: %s" %(i)

pipe.send(i)

time.sleep(1)

def proc2(pipe):

while True:

print "proc2 rev:", pipe.recv()

time.sleep(1)

def proc3(pipe):

while True:

print "PROC3 rev:", pipe.recv()

time.sleep(1)

if __name__ == "__main__":

pipe = multiprocessing.Pipe()

p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))

p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))

#p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))

p1.start()

p2.start()

#p3.start()

p1.join()

p2.join()

#p3.join()

48304ba5e6f9fe08f3fa1abda7d326ab.png

结果

ffc1f68bcca802b84f54bd4c18458b62.png

7. Pool

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例7.1:使用进程池(非阻塞)

48304ba5e6f9fe08f3fa1abda7d326ab.png

#coding: utf-8

import multiprocessing

import time

def func(msg):

print "msg:", msg

time.sleep(3)

print "end"

if __name__ == "__main__":

pool = multiprocessing.Pool(processes = 3)

for i in xrange(4):

msg = "hello %d" %(i)

pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"

pool.close()

pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

print "Sub-process(es) done."

48304ba5e6f9fe08f3fa1abda7d326ab.png

一次执行结果

函数解释:

apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)

close()    关闭pool,使其不在接受新的任务。

terminate()    结束工作进程,不在处理未完成的任务。

join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例7.2:使用进程池(阻塞)

48304ba5e6f9fe08f3fa1abda7d326ab.png

#coding: utf-8

import multiprocessing

import time

def func(msg):

print "msg:", msg

time.sleep(3)

print "end"

if __name__ == "__main__":

pool = multiprocessing.Pool(processes = 3)

for i in xrange(4):

msg = "hello %d" %(i)

pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"

pool.close()

pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

print "Sub-process(es) done."

48304ba5e6f9fe08f3fa1abda7d326ab.png

一次执行的结果

例7.3:使用进程池,并关注结果

48304ba5e6f9fe08f3fa1abda7d326ab.png

import multiprocessing

import time

def func(msg):

print "msg:", msg

time.sleep(3)

print "end"

return "done" + msg

if __name__ == "__main__":

pool = multiprocessing.Pool(processes=4)

result = []

for i in xrange(3):

msg = "hello %d" %(i)

result.append(pool.apply_async(func, (msg, )))

pool.close()

pool.join()

for res in result:

print ":::", res.get()

print "Sub-process(es) done."

48304ba5e6f9fe08f3fa1abda7d326ab.png

一次执行结果

例7.4:使用多个进程池

48304ba5e6f9fe08f3fa1abda7d326ab.png

#coding: utf-8

import multiprocessing

import os, time, random

def Lee():

print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID

start = time.time()

time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数

end = time.time()

print 'Task Lee, runs %0.2f seconds.' %(end - start)

def Marlon():

print "\nRun task Marlon-%s" %(os.getpid())

start = time.time()

time.sleep(random.random() * 40)

end=time.time()

print 'Task Marlon runs %0.2f seconds.' %(end - start)

def Allen():

print "\nRun task Allen-%s" %(os.getpid())

start = time.time()

time.sleep(random.random() * 30)

end = time.time()

print 'Task Allen runs %0.2f seconds.' %(end - start)

def Frank():

print "\nRun task Frank-%s" %(os.getpid())

start = time.time()

time.sleep(random.random() * 20)

end = time.time()

print 'Task Frank runs %0.2f seconds.' %(end - start)

if __name__=='__main__':

function_list= [Lee, Marlon, Allen, Frank]

print "parent process %s" %(os.getpid())

pool=multiprocessing.Pool(4)

for func in function_list:

pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中

print 'Waiting for all subprocesses done...'

pool.close()

pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束

print 'All subprocesses done.'

48304ba5e6f9fe08f3fa1abda7d326ab.png

一次执行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值