怎么查MATLAB中的newrbf,RBF、GRNN 和 PNN 神经网络在Matlab中的用法

%% I. 清空环境变量

clear all

clc

%% II. 训练集/测试集产生

%%

% 1. 导入数据

load iris_data.mat

%%

% 2 随机产生训练集和测试集

P_train = [];

T_train = [];

P_test = [];

T_test = [];

for i = 1:3

temp_input = features((i-1)*50+1:i*50,:);

temp_output = classes((i-1)*50+1:i*50,:);

n = randperm(50);

% 训练集——120个样本

P_train = [P_train temp_input(n(1:40),:)’];

T_train = [T_train temp_output(n(1:40),:)’];

% 测试集——30个样本

P_test = [P_test temp_input(n(41:50),:)’];

T_test = [T_test temp_output(n(41:50),:)’];

end

%% III. 模型建立

result_grnn = [];

result_pnn = [];

time_grnn = [];

time_pnn = [];

for i = 1:4

for j = i:4

p_train = P_train(i:j,:);

p_test = P_test(i:j,:);

%%

% 1. GRNN创建及仿真测试

t = cputime;

% 创建网络

net_grnn = newgrnn(p_train,T_train);

% 仿真测试

t_sim_grnn = sim(net_grnn,p_test);

T_sim_grnn = round(t_sim_grnn);

t = cputime - t;

time_grnn = [time_grnn t];

result_grnn = [result_grnn T_sim_grnn’];

%%

% 2. PNN创建及仿真测试

t = cputime;

Tc_train = ind2vec(T_train);

% 创建网络

net_pnn = newpnn(p_train,Tc_train);

% 仿真测试

Tc_test = ind2vec(T_test);

t_sim_pnn = sim(net_pnn,p_test);

T_sim_pnn = vec2ind(t_sim_pnn);

t = cputime - t;

time_pnn = [time_pnn t];

result_pnn = [result_pnn T_sim_pnn’];

end

end

%% IV. 性能评价

%%

% 1. 正确率accuracy

accuracy_grnn = [];

accuracy_pnn = [];

time = [];

for i = 1:10

accuracy_1 = length(find(result_grnn(:,i) == T_test’))/length(T_test);

accuracy_2 = length(find(result_pnn(:,i) == T_test’))/length(T_test);

accuracy_grnn = [accuracy_grnn accuracy_1];

accuracy_pnn = [accuracy_pnn accuracy_2];

end

%%

% 2. 结果对比

result = [T_test’ result_grnn result_pnn]

accuracy = [accuracy_grnn;accuracy_pnn]

time = [time_grnn;time_pnn]

%% V. 绘图

figure(1)

plot(1:30,T_test,’bo’,1:30,result_grnn(:,4),’r-*’,1:30,result_pnn(:,4),’k:^’)

grid on

xlabel(‘测试集样本编号’)

ylabel(‘测试集样本类别’)

string = {‘测试集预测结果对比(GRNN vs PNN)’;[‘正确率:’ num2str(accuracy_grnn(4)*100) ‘%(GRNN) vs ’ num2str(accuracy_pnn(4)*100) ‘%(PNN)’]};

title(string)

legend(‘真实值’,’GRNN预测值’,’PNN预测值’)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值