- 博客(78)
- 收藏
- 关注
原创 【全栈】Flask中TemplateNotFound错误的解决方法
前言:{ 最近在udacity上的“全栈基础”课程[1],调试render_template的时候出现了TemplateNotFound的错误。}正文:{ 我很确定我把html模板和py文件放到一起了,可是render_template就是反复报错。后来我又仔细看了几遍课程视频,也去看了下github上的代码,才发现html模板需要在templates文件...
2019-11-18 20:22:13 1865 1
原创 【问题探究】torchvision实践中特征提取的问题的纪录(待解决)
前言:{ 最近在调试一个包括efficientnet[1]的网络,其中efficientnet部分被用来做特征提取。我在尝试把efficientnet换成torchvision[2]中的其他网络。但是在第一次尝试resnet101时就发现了这个问题。}正文:{ 在阅读torchvision中的resnet部分的源码[3]后,我发现这里貌似不提供提取特征的方...
2019-11-04 20:16:54 757
原创 【kaggle】北大&百度发起的自动驾驶竞赛的初步了解
前言:{ 最近在kaggle上瞎逛时,忽然看到了一些新竞赛,其中就有北大&百度联合发起的自动驾驶相关竞赛[1]。之前没有了解过自动驾驶,这次趁着这个机会了解一下。}正文:{ 首先是竞赛任务。 此竞赛的任务是预测图片中车辆的型号,朝向和位置。值得一提的是,这次的任务不是分割,而且训练集和测试集都配有mask图片,不过这个mask遮住的是不需...
2019-10-27 22:59:24 1822 14
原创 【问题探究】如何解决pytorch训练时的显存占用递增(导致out of memory)
前言:{ 现在的神经网络模型,动不动就爆内存。两年前我笔记本2G的显存都绰绰有余,现在16G的P100,24G的P40却还不够。更让我郁闷的是,在pytorch训练时,显存占用竟然会不断增加,可能刚开始训练时是正常的,但是放在那里,不知道什么时候它就突然来一句out of memory,然后就尥蹶子不干了,白白浪费了很长的时间。所以这个问题我确实需要搞清楚。}正文:...
2019-09-26 20:56:33 20184 34
原创 【python练习】在kaggle上的首个公开notebook(由mask生成bbox)
前言:{ 知道要更新但没想好写什么,我就干脆在kaggle上写了一篇公开的notebook[1](我记得原来好像叫kernel),内容很简单,就是根据segmentation标签生成bbox。}正文:{ 主要内容在[1]。我做这个是因为我搞错了。我本想试试之前我博客[2]提到的HRNet,而恰好mmdetection里也实现了HRNet,且这里还有许多其他...
2019-09-16 19:54:35 1799 6
原创 【论文阅读纪录】Gated-SCNN: Gated Shape CNNs for Semantic Segmentation
前言:{ 前几篇分割网络的论文都是在[1]中找到的,开始我发现我忘了[2],在[2]中我找到了一个比较新的网络:Gated-SCNN[3],这次就来看看它有什么特点。}正文:{ 在论文的第一节,作者指出了目前分割网络所面临的问题,包括使用略微修改的分类网络会降低网络输出的空间解析度,和颜色、形状(shape)、纹理信息都被混在一起处理。因此,作者提出了一种...
2019-09-13 23:28:27 2461 3
原创 【论文阅读纪录】UPSNet: A Unified Panoptic Segmentation Network
前言:{ 今天阅读的还是在之前的awesome semantic segmentation[1] 中看到的论文UPSNet[2],主要针对全景分割(Panoptic Segmentation)[3]。}正文:{ 在论文的第一节,作者提到了一个现象:目前分割任务包括语义分割(Semantic Segmentation)和实例分割(Instance Segme...
2019-09-09 19:54:19 395
原创 【论文阅读纪录】High-Resolution Representations for Labeling Pixels and Regions(HRNetV2)
前言:{ 最近在github上看到了一个语义分割的汇总[1],上面有很多论文我都还没看过,这次我打算选一个比较新的来读读看。 这次选择的论文是2019年的High-Resolution Representations for Labeling Pixels and Regions [2]。}正文:{ 在论文的第一节,作者介绍了目前一些高分辨率风格...
2019-09-08 20:56:52 1299
原创 【论文阅读纪录】Segmentation-Based Deep-Learning Approach for Surface-Defect Detection
前言:{ 最近很久都没更新了。说实话,没时间都是借口,主要还是忘记了要时刻学习。 这段时间我在了解segmentation网络,之前我搜到了一篇腾讯云社区上的文章[1],标题说其秒杀DeepLab。这确实激起了我的兴趣,因此我决定先读一读原论文[2]。 值得一提的是,此论文的目标是缺陷检测(分割),我很好奇其能不能泛化到其他的segmentation领域。}...
2019-09-06 15:13:14 9147 20
原创 【论文阅读纪录】M2Det(目标检测)
前言:{ 之前github上搜目标检测的模型,搜到了几个效果不错的模型,这次要介绍的就是其中之一:M2Det[1],[2]。 这次的博客就用来做M2Det论文的阅读纪录。}正文:{ 在文章的一开始,作者介绍了目标检测的主要问题:目标的尺度不定。解决这个问题的方法有两种:使用图像金字塔,即对原图进行缩放以使用不同尺度的图像。由于需要反复计算特征...
2019-06-18 22:04:14 832
原创 【论文阅读纪录】如何处理深度学习中图像的标注遗漏(missing annotation)
前言:{ 很久没有更新了,这是因为之前我很幼稚地觉得写博客有点浪费时间。但是现在看来,不整理笔记的话学习效率更低,所以还是继续更新了。 今天的这个话题是之前多目标识别[1]的后续。本来想换个数据集试试目标检测任务,但是现在遇到些棘手的问题,其一就是如何处理样本的标注遗漏(missing annotation)。 下面简单纪录我读到的相关论文。}正文:...
2019-06-14 22:09:00 1783 7
原创 【机器学习实践】自动调参的实践(hyperopt)
前言:{ 在看西瓜书11章的时候,突然想到模型的超参数问题。之前我都是在尝试别人的模型+自己凭感觉给的超参数,不过学习的时候最好不要靠感觉(话说靠感觉也要能解释的通)。 我记得去年我去了谷歌的线下开发者大会,当时遇到一个谷歌的工程师,我向他咨询为什么我修改的模型效果不好(我把inception模型中间部分的数据提取出来做特征,但是效果反而变差),当时那个工程师告诉我一些事情...
2019-04-25 10:12:04 2317
原创 【阅读记录】降维与度量学习(《机器学习》第10章)
前言:{ 我大概看了一下这一章的内容,有很多是我之前了解过的,学习这一章应该不会花费我太多时间,所以就连着上一期一起做笔记了。 线性代数警告!}正文:{ k近邻学习: { 书中描述的比较简单,这种方法大致意思就是:无标签样本标签由周围最近的k个有标签样本的标签决定(哪个标签最多就是哪个标签)。 很明显...
2019-04-13 21:21:38 277
原创 【阅读记录】聚类(《机器学习》第9章)
前言:{ 之前《机器学习》[1]第8章还有几个习题没搞明白(8.1和8.2我甚至连题目的意思都还没看懂,可见我的水平是有多捉急),这次就先进行第9章的内容,毕竟时间宝贵(也许有一天突然开窍了也说不定)。}正文:{ 聚类指标和距离度量: { 聚类是一种无监督学习。度量聚类效果的指标有两类:外部指标和内部指标。 外...
2019-03-29 18:00:38 520
原创 【零散知识】CatBoost的简单了解
前言:{ 之前把《机器学习》上面的集成学习部分过了一遍,之后就想去做编程习题,但是经过搜索发现了很多新模型。上次介绍的是xgboos,而这次介绍CatBoost。 实际除此之外,我还试了lgbm、xgboost和sklearn(sklearn之后可能会单独介绍),但是在同一个数据集上,这3个模型很快(加起来才几分钟)就出结果了,而CatBoost跑了差不多8个小时(英特尔I...
2019-03-27 19:53:31 1818
原创 【零散知识】gradient boosting的简单实践(xgboost)
前言:{ 昨天简单了解了一下gradient boosting,实际上在机器学习比赛中,gradient boosting的算法非常流行。这次要记录的是gradient boosting的一种实现:xgboost(eXtreme Gradient Boosting)。}正文:{ xgboost的简单介绍: { 论文原文地址:[1...
2019-03-20 17:13:24 794
原创 【零散知识】梯度提升(gradient boosting,GB)的简单记录
前言:{ 之前在kaggle上看到了几个之前没学习过的模型,梯度提升机(gradient boosting machine,GBM)就是其中之一,可是《机器学习》[1]里没有相关介绍,因此我就在网上找了一些资料了解一下gradient boosting。}正文:{ boosting算法: { 首先需要介绍一下boosting算法...
2019-03-17 22:06:58 936
原创 【阅读记录】贝叶斯相关知识(极大似然估计与贝叶斯分类器)
前言:{ 上一期[1]实际应该算是阅读记录,因为主要参考的只有[2],这一期也是继续后面的内容。}正文:{ 极大似然估计(Maximum Likelihood Estimation,MLE): { 这个概念在《概率论与数理统计》中有涉及,不过我还记得考试时相关的题目都很简单,只需要取对数求导即可,更深的内容我就不了解了,这次正好...
2019-03-16 18:56:13 478
原创 【论文阅读记录】一篇关于地震预测的论文
前言:{ 这几天开始忙了,可能时间没有之前充裕,但是我尽量3天一更吧。 这篇论文的名称是《Machine Learning Predicts Laboratory Earthquakes》(机器学习预测实验室地震)[1],读一读扩充一下视野。}正文:{ 在第一节,作者先介绍了经典的地震预测方法:基于地震的间隔时间来预测。但是,这种方法在最近的一段...
2019-03-16 17:11:35 1037
原创 【零散知识】离散傅里叶变换的应用
前言:{ 现在手头有个处理音频的练习,由于之前的在学校学的傅立叶变换只是为了解题,而且基本忘光。这次不会涉及太多公式,主要是通过实例简单了解下离散傅里叶变换的应用。 离散傅立叶变换(DFT)是傅立叶变换的离散形式,因为现实中的数据大多都是离散的,所以我也主要记录离散傅立叶变换。}正文:{ 先说应用。 先看下面的代码:#代码1i...
2019-03-05 18:06:44 1511
原创 【零散知识】贝叶斯相关知识(贝叶斯公式)
前言:{ 之前我对贝叶斯概率的相关理论有一些了解,但从来没有系统的记录,这次我就开始记录贝叶斯的相关知识。} 正文:{ 用例1介绍几个术语: 例1:在一款游戏中,O突然遇到了嘤嘤怪,你知道O对嘤嘤怪有90%的概率使用“拳击”,有10%使用“耳光”。“拳击”的命中率为60%,“耳光”的命中率为80%。你听到“嘤嘤嘤”地惨叫,知道嘤嘤怪挨O的打了,但你...
2019-02-18 10:47:19 524
原创 【问题探究】tensorflow中batch normalization的特点
前言:{ 最近在训练自己的模型,但是评估结果很不理想(虽然训练时表现的结果已经很不错了)。在网上查了查,发现了tensorflow里batch normalization的一些特点。} 正文:{ 根据我自己的理解,batch normalization的作用是根据统计数据使得输入数据的分布标准化(具体信息参考[1][2])。为了提高模型的性能,tensorf...
2019-01-28 22:51:48 196
原创 【阅读思考记录】支持向量,支持向量机(SVM)与支持向量回归(SVR)(西瓜书第6章一)
前言:{ 最近很久没跟新了,本来想好好休息一段时间,但我还是放不下当前的学习任务,所以就继续看起了西瓜书[1]。 很久以前我就见到过支持向量机的相关内容,不过从来都没有仔细琢磨,只知道这是一种分类方法。不看不知道,看了后才发现其中涉及很多数学知识(高数里没涉及到的数学知识),我感觉这值得单独开几期。} 正文:{ 支持向量与支持向量机(SVM):...
2019-01-26 22:23:05 597 1
原创 【杂散记录】西瓜书的部分习题外加几个专利
前言:{ 这几天休息,没做什么事情,这里就放些之前的记录。} 正文:{ 西瓜书习题: { 上图是神经网络的梯度计算。 } 技术推荐: { 焦点交叉熵和路径对比: http://36.7.84.108:9991/pdf/pdfPlugin?...
2019-01-08 22:08:27 152
原创 【技术分享】机器学习的部分新技术 (2)
前言:{ 之前我浏览过很多机器学习相关专利,其中有些我感觉还是很有质量的,所以我自己有记录一些精选专利。这次也是相关专利的转载。} 正文:{ 卷积+循环网络的序列预测(股票): http://36.7.84.108:9991/pdf/pdfPlugin?patentAppNo=201810469767.7&patentType=%E5%8F...
2019-01-05 18:16:24 272
转载 【杂散记录】机器学习的部分新技术
前言:{ 本来这次想放点西瓜书的手稿,但不知道为什么图片上传不了(用手机4G也上传失败),所以这次休息,随便放点东西。} 正文:{ 嘴型序列检测(语音获取): http://36.7.84.108:9991/pdf/pdfPlugin?patentAppNo=201810496073.2&patentType=%E5%8F%91%E6%98...
2019-01-02 21:38:11 237
原创 【零散知识】概率神经网络(Probabilistic Neural Network,PNN)
前言:{ 又到了该更新的时间,这次更新的内容是之前见到了概率神经网络(Probabilistic Neural Network,PNN)。} 正文:{ [1]中对概率神经网络的介绍非常简单,但没有图。 [2]中给出了一张结构图,见图2。 按照[1]的介绍,概率神经网络包括输入层,模式层,求和层和输出层。 输入层接受数据输入,...
2018-12-27 22:52:10 6871 3
原创 【零散知识】最大类间方差法(大津法,Otsu)
前言:{ 最近特别忙(或者说时间规划出了问题),所以更新的都是短篇。 本次的内容是最大类间方差法(大津法,Otsu)。} 正文:{ 根据[1]中的介绍,大津法的主要作用是二值划分(求阈值)。其原理非常简单,就是求式(1)最大时其中t的值。式(1) 其中两个ω分别代表类0和类1的数据所占比例(权值),两个σ2分别代表类0和类1的数据的方差,...
2018-12-24 23:38:15 1573
原创 【神经网络实践】tensorflow下网络多学习率的实现(暂未测试)
前言:{ 在看到了在网络中应用不同学习率的论文[1]后,我就想尝试一下这种多学习率的方法。} 正文:{ 我在谷歌上搜索了一下,没搜到直接的代码,但发现了[2]。之后自己写了段代码,见代码1。#代码1def multi_learning_rate_optimizor(learning_rate_mapping, tf_optimizor): "...
2018-12-21 23:48:34 171
原创 【零散知识】核密度估计(Kernel Density Estimation)
前言:{ 由于有代码需要调试,这一次也是选择了一部分小内容来更新。 这次更新的内容是我之前见到到但没仔细了解的核密度估计(Kernel Density Estimation)} 正文:{ 按照维基百科对核密度估计的介绍[1],核密度估计是一种估计随机变量的概率密度函数的非参数方法,式(1)是公式。式(1) 其中x是若干数据样本;K()是核...
2018-12-18 20:53:37 4136
原创 【论文阅读记录】FaceNet的简单记录
前言:{ 最近我去了支付宝的开放日活动,似乎看到了人脸支付的未来。我也趁热打铁,借助目前比较流行的模型了解一下人脸识别的相关模型。 我在谷歌上搜到FaceNet[1],这是谷歌的一个模型,专门用来识别人脸。} 正文:{ 论文说的很明白,模型主要分为两部分:特征提取和距离判定。结构如图2。 其中deep architecture是特征提取...
2018-12-15 20:20:06 444
原创 【Python从零开始】caffe2的安装过程(在win10+Python+VS2015的环境下,改成caffe2的安装)(2)
前言:{ 上次中断是因为C:\Program Files (x86)\中没有Windows Kits,这次是添加了Windows Kits后的过程。} 正文:{ 在搞定Windows Kits之后,我按照[1]中的配置又试了一次。本来等着下载问题的出现,没想到出现了[1]中没有的问题,见图1。图1 我在build_win.cmd中没看到PYTHON...
2018-12-12 20:20:56 1871
原创 【零散知识】流行排序(manifold ranking)和基于流行排序的图像检索
前言:{ 之前在工作中见到了流行排序(manifold ranking),当时只是知道可以用它进行显著性检测,没有太在意其中原理,就先记录下了这个概念。今天打开记录未知概念的记事本后才发现,积累的内容太多了,所以估计最近更新的博客都是零散知识了。 在谷歌搜了一下manifold ranking,之后搜到了[2],所以就借此了解一下流行排序。}正文:{...
2018-12-09 20:02:28 3848 2
原创 【问题探究】numpy.squeeze()的输入问题
前言:{ 这篇博客只介绍一个小问题,没有经过多少检索。} 正文:{ numpy.squeeze(a, b)[1]可以把a的shape中b位置的1删除。#代码1a = []a.append([[1,2]])b = np.squeeze(a, 0) 我原本以为,代码1执行完后"b=[[1,2]]",但实际"b=[1,2]"。 代码...
2018-12-09 16:49:52 279
原创 【Python从零开始】caffe的安装过程(在win10+Python+VS2015的环境下)(1)
前言:{ 我很久之前就听说过caffe框架,只不过我先安装了tensorflow,而且用着还行,所以就把caffe忘了。但最近看到一些模型的数据是caffe格式的,所以就想把caffe装好。 本来现在我不太愿意就安装一个环境而单独开一篇博客。但是我看到了[1],我没想过会有这么复杂,所以就在此记录整个安装过程。 另外,我已经安装好了Python,Anaconda,...
2018-12-06 22:59:05 699
原创 【论文阅读记录】孪生网络(Siamese network)
前言:{ 之前深度学习不流行的时候,一般像指纹鉴别这种任务都需要很复杂的特征工程(比如寻找角点[1])来完成。我在谷歌搜索了深度学习的指纹识别解决方案,之后搜到了[2],便因此了解到了孪生网络(Siamese network)} 正文:{ 由于[2]的内容很少,我就继续搜索,之后搜索到了[3]。 图3是一个简单的孪生网络。 其中输入层...
2018-12-03 20:20:13 4476
原创 【问题探究】使用pip安装pycocotools(COCOAPI)的过程中遇到的一些问题
前言:{ 我想使用COCO数据集[1]来调试多目标识别,所以下载完数据集后,我就跟API教程[2]操作。结果遇到一堆问题,郁闷的是使用别人写的api所花的时间比完全自己写所要花的时间还要多的多(至少翻2倍)。} 正文:{ 遇到的第一个问题是关于字符编码的错误。 首先直接安装pycocotools,但出现图1中的问题。图1 我感觉很奇怪,一...
2018-11-30 20:11:43 4866 5
原创 【零散知识】径向基函数,径向基神经网络和其与BP神经网络的区别
前言:{ 最近在重新看傅立叶变换,感觉这简直是打开新世界的大门。都怪我之前没学好,现在看起来比较费劲,花了不少时间,所以这次还是零散知识。 这次的主要内容都是围绕径向基神经网络展开的。}正文:{ 根据[1]中的介绍,径向基函数(Radial basis function,RBF)是一类函数。设输入样本为x,一个中心点为c,则任何只依赖x和c之间距离的函...
2018-11-27 17:25:17 4763
原创 《TensorFlow实战Google深度学习框架(第2版)》第6章练习
前言: 第6章最后有个迁移学习的例子,我自己试着按照书上的目的从新写了一遍。 正文: 代码如下: testC6.py:# -- coding: utf-8 --'''此文件实现迁移学习的主流程。'''import os.pathimport tensorflow as tfimport JPG_to_npyimport tensorflow.c...
2018-11-25 00:07:14 345
原创 【零散知识】矩,游程长度,自相关函数以及灰度共生矩阵分析(空域纹理分析)
前言:{ 之前在工作中了解到了纹理分析的相关方法,但也见到了一些从未见过或已经忘记的概念,这次就来记录一下这些概念。} 正文:{ 矩(moment)的一组数据的一种属性,其定义如式1[1]。式1 其中是f(x)的n阶矩;如果没特别说明,c一般为0。 可见,像图像这样的离散数据,其0阶具就是其像素值的总和。 游程长度编码(R...
2018-11-21 17:57:48 1428
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人