【阅读记录】降维与度量学习(《机器学习》第10章)

前言: { 我大概看了一下这一章的内容,有很多是我之前了解过的,学习这一章应该不会花费我太多时间,所以就连着上一期一起做笔记了。 线性代数警告! } 正文: { k近邻学习: { 书中描述的比较简单,这种方法大致意思就是:无标签样本标签由周围最近的k个有标签样本的标...

2019-04-13 21:21:38

阅读数 11

评论数 0

【阅读记录】聚类(《机器学习》第9章)

前言: { 之前《机器学习》[1]第8章还有几个习题没搞明白(8.1和8.2我甚至连题目的意思都还没看懂,可见我的水平是有多捉急),这次就先进行第9章的内容,毕竟时间宝贵(也许有一天突然开窍了也说不定)。 } 正文: { 聚类指标和距离度量: { 聚类是一种无监督学习。...

2019-03-29 18:00:38

阅读数 22

评论数 0

【零散知识】CatBoost的简单了解

前言: { 之前把《机器学习》上面的集成学习部分过了一遍,之后就想去做编程习题,但是经过搜索发现了很多新模型。上次介绍的是xgboos,而这次介绍CatBoost。 实际除此之外,我还试了lgbm、xgboost和sklearn(sklearn之后可能会单独介绍),但是在同一个数据集上,...

2019-03-27 19:53:31

阅读数 63

评论数 0

【零散知识】gradient boosting的简单实践(xgboost)

前言: { 昨天简单了解了一下gradient boosting,实际上在机器学习比赛中,gradient boosting的算法非常流行。这次要记录的是gradient boosting的一种实现:xgboost(eXtreme Gradient Boosting)。 } 正文: ...

2019-03-20 17:13:24

阅读数 20

评论数 0

【零散知识】梯度提升(gradient boosting,GB)的简单记录

前言: { 之前在kaggle上看到了几个之前没学习过的模型,梯度提升机(gradient boosting machine,GBM)就是其中之一,可是《机器学习》[1]里没有相关介绍,因此我就在网上找了一些资料了解一下gradient boosting。 } 正文: { bo...

2019-03-17 22:06:58

阅读数 20

评论数 0

【阅读记录】贝叶斯相关知识(极大似然估计与贝叶斯分类器)

前言: { 上一期[1]实际应该算是阅读记录,因为主要参考的只有[2],这一期也是继续后面的内容。 } 正文: { 极大似然估计(Maximum Likelihood Estimation,MLE): { 这个概念在《概率论与数理统计》中有涉及,不过我还记得考试时相关的...

2019-03-16 18:56:13

阅读数 12

评论数 0

【论文阅读记录】一篇关于地震预测的论文

前言: { 这几天开始忙了,可能时间没有之前充裕,但是我尽量3天一更吧。 这篇论文的名称是《Machine Learning Predicts Laboratory Earthquakes》(机器学习预测实验室地震)[1],读一读扩充一下视野。 } 正文: { 在第一节,作...

2019-03-16 17:11:35

阅读数 9

评论数 0

【零散知识】离散傅里叶变换的应用

前言: { 现在手头有个处理音频的练习,由于之前的在学校学的傅立叶变换只是为了解题,而且基本忘光。这次不会涉及太多公式,主要是通过实例简单了解下离散傅里叶变换的应用。 离散傅立叶变换(DFT)是傅立叶变换的离散形式,因为现实中的数据大多都是离散的,所以我也主要记录离散傅立叶变换。 } ...

2019-03-05 18:06:44

阅读数 25

评论数 0

【零散知识】贝叶斯相关知识(贝叶斯公式)

前言: {     之前我对贝叶斯概率的相关理论有一些了解,但从来没有系统的记录,这次我就开始记录贝叶斯的相关知识。 }   正文: {     用例1介绍几个术语:     例1:在一款游戏中,O突然遇到了嘤嘤怪,你知道O对嘤嘤怪有90%的概率使用“拳击”,有10%使用“耳光”。...

2019-02-18 10:47:19

阅读数 17

评论数 0

【问题探究】tensorflow中batch normalization的特点

前言: {     最近在训练自己的模型,但是评估结果很不理想(虽然训练时表现的结果已经很不错了)。在网上查了查,发现了tensorflow里batch normalization的一些特点。 }   正文: {     根据我自己的理解,batch normalization的作用...

2019-01-28 22:51:48

阅读数 11

评论数 0

【阅读思考记录】支持向量,支持向量机(SVM)与支持向量回归(SVR)(西瓜书第6章一)

前言: {     最近很久没跟新了,本来想好好休息一段时间,但我还是放不下当前的学习任务,所以就继续看起了西瓜书[1]。     很久以前我就见到过支持向量机的相关内容,不过从来都没有仔细琢磨,只知道这是一种分类方法。不看不知道,看了后才发现其中涉及很多数学知识(高数里没涉及到的数学知识)...

2019-01-26 22:23:05

阅读数 22

评论数 0

【杂散记录】西瓜书的部分习题外加几个专利

前言: {     这几天休息,没做什么事情,这里就放些之前的记录。 }   正文: {     西瓜书习题:     {                 上图是神经网络的梯度计算。     }     技术推荐:     {         焦点交叉熵和路径...

2019-01-08 22:08:27

阅读数 30

评论数 0

【技术分享】机器学习的部分新技术 (2)

前言: {     之前我浏览过很多机器学习相关专利,其中有些我感觉还是很有质量的,所以我自己有记录一些精选专利。这次也是相关专利的转载。 }   正文: {     卷积+循环网络的序列预测(股票):     http://36.7.84.108:9991/pdf/pdfPlug...

2019-01-05 18:16:24

阅读数 85

评论数 0

【杂散记录】机器学习的部分新技术

前言: {     本来这次想放点西瓜书的手稿,但不知道为什么图片上传不了(用手机4G也上传失败),所以这次休息,随便放点东西。 }   正文: {     嘴型序列检测(语音获取):     http://36.7.84.108:9991/pdf/pdfPlugin?patent...

2019-01-02 21:38:11

阅读数 40

评论数 0

【练习题】西瓜书(周志华教授所著《机器学习》)第2章部分习题

前言: {     由于之前在网上买的西瓜书(周志华教授所著《机器学习》)到货了,这几天都在看这本书,没有看论文。所以这次就先把我做的部分习题放出来充数。 }   正文: {     直接上图:     其中2.2我没看懂,如果把未知样本都归为样本数量多的类别,那这样未知样本不...

2018-12-30 23:26:18

阅读数 35

评论数 0

【零散知识】概率神经网络(Probabilistic Neural Network,PNN)

前言: {     又到了该更新的时间,这次更新的内容是之前见到了概率神经网络(Probabilistic Neural Network,PNN)。 }   正文: {     [1]中对概率神经网络的介绍非常简单,但没有图。     [2]中给出了一张结构图,见图2。   ...

2018-12-27 22:52:10

阅读数 561

评论数 3

【零散知识】最大类间方差法(大津法,Otsu)

前言: {     最近特别忙(或者说时间规划出了问题),所以更新的都是短篇。     本次的内容是最大类间方差法(大津法,Otsu)。 }   正文: {     根据[1]中的介绍,大津法的主要作用是二值划分(求阈值)。其原理非常简单,就是求式(1)最大时其中t的值。 式(1...

2018-12-24 23:38:15

阅读数 47

评论数 0

【神经网络实践】tensorflow下网络多学习率的实现(暂未测试)

前言: {     在看到了在网络中应用不同学习率的论文[1]后,我就想尝试一下这种多学习率的方法。 }   正文: {     我在谷歌上搜索了一下,没搜到直接的代码,但发现了[2]。之后自己写了段代码,见代码1。 #代码1 def multi_learning_rate_op...

2018-12-21 23:48:34

阅读数 17

评论数 0

【零散知识】核密度估计(Kernel Density Estimation)

前言: {     由于有代码需要调试,这一次也是选择了一部分小内容来更新。     这次更新的内容是我之前见到到但没仔细了解的核密度估计(Kernel Density Estimation) }   正文: {     按照维基百科对核密度估计的介绍[1],核密度估计是一种估计随...

2018-12-18 20:53:37

阅读数 60

评论数 0

【论文阅读记录】FaceNet的简单记录

前言: {     最近我去了支付宝的开放日活动,似乎看到了人脸支付的未来。我也趁热打铁,借助目前比较流行的模型了解一下人脸识别的相关模型。     我在谷歌上搜到FaceNet[1],这是谷歌的一个模型,专门用来识别人脸。 }   正文: {     论文说的很明白,模型主要分为...

2018-12-15 20:20:06

阅读数 59

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭