本篇文章中,我们一起探究了图像处理中,最基本的形态学运算——膨胀与腐蚀。浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试。。。。。。。。。。
一、理论与概念讲解——从现象到本质
1.1 形态学概述
形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构,而我们图像处理中指的形态学,往往表示的是数学形态学,下面一起来了解数学形态学的概念。
数学形态学(Mathematical morphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀,二值开闭运算,骨架抽取,极限腐蚀,击中击不中变换,形态学梯度,Top-hat变换,颗粒分析,流域变换,灰值腐蚀和膨胀,灰值开闭运算,灰值形态学梯度等。
简单来讲,形态学操作就是基于形状的一系列图像处理操作。opencv为进行图像的形态学变换提供了快捷,方便的函数,最基本的形态学操作有二种,他们是:膨胀和腐蚀(Dilation与Erosion)
膨胀与腐蚀能实现多种多样的功能,主要如下:
消除噪声
分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
寻找图像中的明显的极大值区域或极小值区域
求出图像的梯度
在进行腐蚀和膨胀的讲解之前,首先需要注意:腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。 膨胀就是图像中的高亮部分进行膨胀,“邻域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中高亮部分被腐蚀,“邻域被蚕食”,效果图拥有比原图更小的高亮区域。
1.2 膨胀
其实,膨胀就是求局部最大值的操作。
按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。
核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。
而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷
膨胀的数学表达式:
膨胀效果图(毛笔字):
照片膨胀效果图:
1.3 腐蚀
再来看一下腐蚀,,大家应该知道,膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作,我们一般都会把腐蚀和膨胀对应起来理解和学习。下文就可以看到,两者的函数原型也是基本上一样的。
原理图:
腐蚀的数学表达式:
腐蚀效果图(毛笔字):
照片腐蚀效果图:
声明:这俩个数学表达式直接复制过来看的有点问题,应该是把小字体的部分去掉才对吧。。。。。。。。
二、深入——OpenCV源码分析溯源
直接上源码吧,在…\opencv\sources\modules\imgproc\src\ morph.cpp路径中 的第1773行开始就为erode(腐蚀)函数的源码,
1 voidcv::erode( InputArray src, OutputArray dst, InputArray kernel,2 Point anchor, intiterations,3 int borderType, const Scalar&borderValue )4 {5 //调用morphOp函数,并设定标识符为MORPH_ERODE
6 morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType, borderValue );7 }
第1781行
voidcv::dilate( InputArray src, OutputArray dst, InputArray kernel,
Point anchor,intiterations,int borderType, const Scalar&borderValue )
{//调用morphOp函