matlab var模型_贝叶斯向量自回归模型

摘要:

在小样本以及VAR模型参数过多的情况下,Bayes推断理论则显现了绝对优势。Zellner将Bayes理论应用到计量经济学领域,为这方而的系统研究打下基础。Litterman是在VAR模型中应用Baye理论的创始人,基于Bayes理论解决向量自回归模型的估计和分析问题,对明尼苏达州的7个宏观指标进行很好的预测。BVAR模型对VAR模型的改进主要在于BVAR利用了来源于经验和历史资料的先验信息来增加预测的准确性。当参数被断定在某一值(如零值)时,BVAR模型使参数趋近于这一取向而不是锁定确定值,即把所有变量的系数都看成是围绕其均值的波动,是给定系数的先验分布函数,而不是系数的精确数量关系。

0c606bb97a661375edfbac0d4dd28ccf.png

3.6.1向量自回归模型的贝叶斯推断

c11e85c40b3a3edc4e4dcbdd359157e2.png

779724614ae3a73bfe5b3d2aa0fe850d.png

在VAR(p)模型中,系数矩阵B可能受到某些条件的限制,使得各方程中的解释变量并不完全相同,即某些变量可能在部分方程中出现,而不出现在其他方程中,则称此模型为限制性VAR(p)模型。由于限制性条件的添加将使得参数后验分布变得十分复杂。所以本书主要以贝叶斯非限制性VAR模型为主。

BVAR模型需要对系数设定先验分布。目前发展出来的先验分布很多,如Noninformative分布、Minnesota分布、自然共扼( Natural Conjugate)分布、独立Normal Wishart分布等,最常用的是Minnesota分布和Wishart分布。主要分为共轭先验分布与扩散先验分布两类。

1. 扩散先验分布

c3c0c1314b25a4bafc97a649796dd47f.png3f0bcbc1dc0e559d1008a3fe689b08be.png

2.共轭先验分布

共轭分布是贝叶斯分析中常见的另一类参数先验分布,其思想基础是先验的规律与后验的规律具有一致性,这一要求的具体化就是先验分布和后验分布要属于同一类分布族。对于每个具体的分布来说,都有其共轭分布。对于一般共轭分布而言,存在着过多的超参数(贝叶斯推断假设参数不是锁定于一个确定值而是满足某个分布,超参数就是参数分布中的参数),这也就使得VAR(p)模型的贝叶斯推断往往只有理论上的意义,而不能应用于实际预测分析中。为了解决这个问题,Robert Litterman(1986)提出Minnesota先验分布,提高了模型的预测精度。

本节主要介绍Minnesota共轭先验分布下VAR(p)模型的贝叶斯分析方法。

60cd9e69158c259e286c60e53ab93fc7.png

7154d6d4a4c3a5e7bdfcbf1c917712b2.png

7eb2fc214d85237a4a448f4c2a97049d.png

e1948f76ef8d3f2913e121d74a9eda76.png

fae8bb292c4b05d0d0e05f79c98b3e85.png

3.参数后验估计

9da9ca442abfbce38883a15bc9828b10.png

c920d5836f01d799c93e7bfd12e9d749.png

3.6.2例子

   对美国,英国,法国,德国,加拿大,意大利和日本等西方七国集团的GDP增长率(%)、通货膨胀率(%)和进出口总额(b$)的数据建立贝叶斯VAR模型。利用Sims的似然比统计检验量确定模型的最优滞后阶数,得出VAR模型的滞后阶数为3。

1648bc6807da5728dd1a11d8348907e1.png

表3.6.1       模型超参数的选择

BVAR1

1.0

0.4

0.5

BVAR2

1.0

0.3

0.4

BVAR3

1.0

0.2

0.6

目前该模型实现可由Eviews8、RATS5.0、matlab以及R软件等软件完成。其中Eviews8操作简便,不过模型相关预测功能尚不能实现。其余三者功能较为全面,RATS5.0与R软件的MSBAVR包为目前主流的贝叶斯向量自回归分析工具。

在获得模型参数的估计后,除了脉冲响应分析,还可以利用贝叶斯VAR(p)模型对进行预测分析,具体预测步骤AR模型和VAR模型的预测步骤基本一致,可以是一步超前预测,两步超前预测或多步超前预测。利用Theil的西尔U统计量来分析贝叶斯VAR(p)模型的预测精度,U统计量是基于所研究的预测模型的均方根误差与基于随机游走预测模型(random walk model)的均方根误差之比。利用RATS5.0软件和1963:1~1995:4的数据贝叶斯VAR(p)模型进行估计,并对1996:1~2000:4进行一步超前至八步超前预测,并计算一步超前预测至四步超前预测、五步超前预测至八步超前预测的平均西尔U统计值,有关结果列于表3.6.2和表3.6.3。根据表3.6.4可知,BVAR2的设定较优于另外两个模型设定。

表3.6.2      一步超前预测~四步超前预测的平均西尔U统计值(1996:1~2000:4)

3d4a14fd234e5e3b292b226b6f46f1c2.png

表3.6.3       五步超前预测~八步超前预测的平均西尔U统计值(1996:1~2000:4)

b3f917a54e3bed081366cfa7e2d747c3.png

表3.6.4   超前预测的综合平均西尔U统计值(1996:1~2000:4)

BVAR1

BVAR2

BVAR3

1-4步超前预测

0.632

0.609

0.623

5-8步超前预测

0.679

0.64

0.661

例3.6.1 表3.6.1中序列FDI、GDP、CK分别表示1985-2015年外商直接投资(万美元)、国内生产总值(亿元)、出口额(亿元),试建立BVAR模型。

表3.6.1 1985-2015年FDI、GDP、出口额数据    

729ce87e503d105926d57a6e1dc7f5ae.png

为避免数据的剧烈波动,将原始数据取对数处理,得到表3.6.2:

表3.6.2 1985-2015年FDI、GDP、出口额数据取对数值

d5a0f473580a8a1eb58418f1462b036a.png

在Minnesota先验分布下,建立了 BVAR(4)模型,模型参数估计结果如下:


表3.6.7  BVAR模型的估计结果

a97c76ef573ff3127d3942b0a377f90e.png

讲员:叶阿忠

编辑:丁梦璐

往期编辑:

面板数据半参数回归模型

第五章 放宽基本假定的模型2-异方差

相关资源:向量回归
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页