tensorflow2是指_TensorFlow2学习(1)

1 TensorFlow2学习

1.1 张量(Tensor)

1.1.1张量是多维数组(列表),用阶表示张量的维数:维数阶名称例子0-D0scalar 标量s=1 2 3

1-D1vector 向量s=[1,2,3]

2-D2matrix 矩阵s=[[1,2,3],[1,2,3],[1,2,3]]

n-D3tensor 张量s=[[[ ]]] 其中左侧中括号有n个

1.1.2创建一个Tensor

1)tf.constant(张量内容,dtype=数据类型(可选))import tensorflow as tf

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

a = tf.constant([1, 5],dtype=tf.int64)

print(a)

print(a.dtype)

print(a.shape)

#结果显示

tf.Tensor([1 5], shape=(2,), dtype=int64)

(2,)

注:张量的形状看shape的逗号隔开了几个数字,隔开了几个数字,张量就是几维。

2)tf.convert_to_tensor(数据名,dtype=数据类型(可选)) 将numpy的数据类型转换为tensor数据类型。import tensorflow as tf

import numpy as np

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

a = np.arange(0, 5)

b = tf.convert_to_tensor(a, dtype=tf.int64)

print(a)

print(b)

#结果显示

[0 1 2 3 4]

tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)

3)tf.fill(维度,指定值) 创建全为指定值的张量,其中指定值只能为标量。a = tf.fill([2, 3], 9)

print(a)

#结果显示

tf.Tensor(

[[9 9 9]

[9 9 9]], shape=(2, 3), dtype=int32)

4)tf.random.normal(维度,mean=均值,stddev=标准差) 生成正态分布的随机数,默认均值为0,标准差为1

tf.random.truncated_normal(维度,mean=均值,stddev=标准差) 生成截断式正态分布的随机数,生成的数更向均值集中。a = tf.random.normal([2, 2], mean=0.3, stddev=2)

b = tf.random.truncated_normal([2, 2], mean=0.3, stddev=2)

print(a)

print(b)

#结果显示

tf.Tensor(

[[-0.41351897  1.8662729 ]

[ 2.200518    1.3296602 ]], shape=(2, 2), dtype=float32)

tf.Tensor(

[[ 1.5761657  1.201687 ]

[ 1.9042709 -0.7466951]], shape=(2, 2), dtype=float32)

4)tf.random.uniform(维度,minval=最小值,maxval=最大值) 生成均匀分布的随机数,生成数区间是前开后闭区间。a = tf.random.uniform([2, 2], minval=-2, maxval=2)

print(a)

#结果显示

tf.Tensor(

[[ 0.2742386  -0.69904184]

[ 1.3488121  -0.7883253 ]], shape=(2, 2), dtype=float32)

1.2 常用函数

1)tf.cast(张量名,dtype=数据类型) 强制tensor转换为该数据类型

2)tf.reduce_min(张量名) 计算张量维度上元素的最小值

3)tf.reduce_max(张量名) 计算张量维度上元素的最大值x1 = tf.constant([1, 2, 3], dtype=tf.int64)

print(x1)

x2 = tf.cast(x1, tf.float32)

print(x2)

x3 = tf.reduce_min(x1)

x4 = tf.reduce_max(x2)

print(x3, x4)

#结果显示

tf.Tensor([1 2 3], shape=(3,), dtype=int64)

tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32)

tf.Tensor(1, shape=(), dtype=int64) tf.Tensor(3.0, shape=(), dtype=float32)

4)tf.reduce_mean(张量名,axis=操作轴) 计算张量沿着指定维度的平均值,其中axis为1,表示行,为0表示列,若axis没写,则对整个张量求平均,先列求,再行求。

5)tf.reduce_sum(张量名,axis=操作轴) 计算张量沿着指定维度的和。x = tf.constant([[1, 2, 3], [3, 2, 3]], dtype=tf.float32)

print(x)

print(tf.reduce_mean(x), tf.reduce_sum(x, axis=1))

#结果显示

tf.Tensor(

[[1. 2. 3.]

[3. 2. 3.]], shape=(2, 3), dtype=float32)

tf.Tensor(2.3333333, shape=(), dtype=float32) tf.Tensor([6. 8.], shape=(2,), dtype=float32)

6)tf.Variable(初始值) 将变量标记为“可训练”,被标记的变量会在反向传播中记录梯度信息。神经网络训练中,常用该函数标记待训练参数。w = tf.Variable(tf.random.uniform([2, 2], minval=0, maxval=1))

print(x)

#结果显示

array([[0.7305305 , 0.7579589 ],

[0.02064288, 0.32717478]], dtype=float32)>

注:可以用来表示损失函数loss的参数w,即将w标记为可训练变量。

7)tensorflow中的数学运算四则运算:tf.add;tf.subtract;tf.multiply;tf.divide。这些四则运算张量维度必须一样

平方、次方与开方:tf.square;tf.pow;tf.sqrt

矩阵乘:tf.matmul

8)tf.data.Dataset.from_tensor_slices((输入特征,标签)) 切分传入张量的第一维度,生成输入特征/标签对,构建数据集。该方法可以读取numpy与tensor两种格式的数据。feature = tf.constant([1, 3, 10, 24])

labels = tf.constant([0, 0, 1, 1])

dataset = tf.data.Dataset.from_tensor_slices((feature, labels))

print(dataset)

for i in dataset:

print(i)

#结果显示

(, )

(, )

(, )

(, )

9)tf.GradientTape() 用它的with结构记录计算过程,gradient求出张量的梯度,即求导。

其结构一般为:with tf.GradientTape() as tape:

若干个计算过程

grad = tape.gradient(函数, 对谁求导)

下面举个例子:其中损失函数为w的平方,w=3.0with tf.GradientTape() as tape:

w = tf.Variable(3.0)

loss = tf.pow(w, 2)

grad = tape.gradient(loss, w)

print(grad)

#结果显示

tf.Tensor(6.0, shape=(), dtype=float32)

10)enumerate(列表名) 是python的内建函数,它可以遍历每个元素(如列表、元组或字符串),组合形式为:索引 元素,常在for循环中使用。seq = ['one', 'two', 'three']

for i, element in enumerate(seq):

print(i, element)

#结果显示

0 one

1 two

2 three

11)tf.one_hot(待转换数据,depth=几分类) 在分类问题中,用独热码,即one_hot做标签,‘1’表示是,‘0’表示非,将待转换数据,转换为one_hot形式的数据进行输出。classes = 5

labels = tf.constant([1, 2, 3])

output = tf.one_hot(labels, classes)

print(output)

#结果显示

tf.Tensor(

[[0. 1. 0. 0. 0.]

[0. 0. 1. 0. 0.]

[0. 0. 0. 1. 0.]], shape=(3, 5), dtype=float32)

12)tf.nn.softmax(待转换数据) 使n个输出变成0~1的值,且其和为1。y = tf.Variable([1.02, 2.30, -0.19])

y_pro = tf.nn.softmax(y)

print("After softmax, y_pro is:", y_pro)

#结果显示

After softmax, y_pro is: tf.Tensor([0.2042969  0.73478234 0.06092078], shape=(3,), dtype=float32)

13)assign_sub(w要自减的内容) 赋值操作,更新参数的值并返回。要更新的参数的前提是,其是可训练的,即初始w值是variable构建的。w = tf.Variable(3)

w.assign_sub(1) # 实现w-1功能,即自减

print(w)

#结果显示

14)tf.argmax(张量名,axis=操作轴) 返回张量沿指定维度最大值的索引。x = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]])

print(x)

print(tf.argmax(x, axis=1))

print(tf.argmin(x, axis=0))

#结果显示

[[1 2 3]

[2 3 4]

[4 5 6]]

tf.Tensor([2 2 2], shape=(3,), dtype=int64)

tf.Tensor([0 0 0], shape=(3,), dtype=int64)

1.3 简单实践(鸢尾花数据读取与神经网络分类)

1.3.1 鸢尾花数据读取from sklearn import datasets

from pandas import DataFrame

import pandas as pd

x_data = datasets.load_iris().data

y_data = datasets.load_iris().target

#print('鸢尾花数据:\n', x_data)

#print('鸢尾花标签:\n', y_data)

x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])# 将其变成表格形式,并为每一列增加中文标签

pd.set_option('display.unicode.east_asian_width', True)# 设置表格为列名对其

print('鸢尾花数据:\n', x_data)

x_data['类别'] = y_data # 为x_data增加一列类别,即原来定义的y_data

print('增加一列后的表格为:\n', x_data)

#结果显示

鸢尾花数据:

花萼长度  花萼宽度  花瓣长度  花瓣宽度

0         5.1       3.5       1.4       0.2

..       ...       ...       ...       ...

149       5.9       3.0       5.1       1.8

[150 rows x 4 columns]

增加一列后的表格为:

花萼长度  花萼宽度  花瓣长度  花瓣宽度  类别

0         5.1       3.5       1.4       0.2     0

..       ...       ...       ...       ...   ...

149       5.9       3.0       5.1       1.8     2

[150 rows x 5 columns]

1.3.2 神经网络分类

实现该功能我们可以分三步走:准备数据数据集读入

数据集乱序

生成训练集和测试集(即x_train/y_train,x_test/y_test)

配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网络中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss注:还可以进行以下操作

1)测试结果计算当前参数前向传播后的准确率,显示当前acc

2)acc/loss可视化

以下为一个神经网络实现鸢尾花分类示例:import tensorflow as tf

from sklearn import datasets

import matplotlib.pyplot as plt

import numpy as np

# 第一步-准备数据-数据读取

x_data = datasets.load_iris().data

y_data = datasets.load_iris().target

# 第一步-准备数据-打乱数据

np.random.seed(1) # 使用相同的seed打乱,保证输入的数据与标签一一对应

np.random.shuffle(x_data) # 生成随机列表

np.random.seed(1)

np.random.shuffle(y_data)

tf.random.set_seed(1)

# 第一步-准备数据-分成训练集和测试集

x_train = x_data[:-30] # 由开头到倒数第30个

y_train = y_data[:-30]

x_test = x_data[-30:] # 由倒数第30个到最后

y_test = y_data[-30:]

# 为防止数据集出现计算上的错误,我们将数据集转换类型

x_train = tf.cast(x_train, dtype=tf.float32)

x_test = tf.cast(x_test, dtype=tf.float32)

# 第一步-准备数据-特征值与标签配对,并以batch形式输入

train_fl = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)

test_fl = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 第二步-搭建网络-定义所有相关参数(这一步可以在训练等模型写完后再完成)

w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1))

b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1))

lr = 0.1 # 学习率为0.1

train_loss_result = [] # 每轮的loss记录于此,为后面的loss图像提供数据

test_acc = [] # 每轮的准确率记录于此,为后面的acc图像提供数据

epoch = 500 # 循环次数

loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 第三步-参数优化-训练模型部分

for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集

for step, (x_train, y_train) in enumerate(train_fl): # batch级别的循环,每个step循环一次batch

with tf.GradientTape() as tape:

y = tf.matmul(x_train, w1) b1 # 全连接层

y = tf.nn.softmax(y) # 输出0~1的真实值

y_ = tf.one_hot(y_train, depth=3) # 预测值

loss = tf.reduce_mean(tf.square(y_ - y)) # 损失函数

loss_all = loss.numpy() # 将每个step计算出的loss累加,为后面求loss平均值提供数据

grads = tape.gradient(loss, [w1, b1])

# 实现w与b的梯度更新:w1=w1-lr*w1_grad ,b1同理

w1.assign_sub(lr * grads[0])

b1.assign_sub(lr * grads[1])

print('Epoch {}, loss: {}'.format(epoch, loss_all/4))

train_loss_result.append(loss_all / 4) # 将4个step的loss求平均记录在变量中

loss_all = 0 # 将loss_all归零,为记录下一个epoch做准备

# 第四步-预测模型部分

total_correct, total_number = 0, 0 # 前者为测试结果为正确的数量,后者为样本总数量,都初始化为0

for x_test, y_test in test_fl: # 因为我们每个step为32,而我们数据只有30个,所以这里不使用enumerate

y = tf.matmul(x_test, w1) b1

y = tf.nn.softmax(y)

pred = tf.argmax(y, axis=1) # 返回预测值中最大的索引,即预测的分类

pred = tf.cast(pred, dtype=y_test.dtype)

correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 预测正确的结果保留下来

correct = tf.reduce_sum(correct)

total_correct = int(correct)

total_number = x_test.shape[0]

acc = total_correct / total_number

test_acc.append(acc)

print('Test_acc:', acc)

print('---------------------------')

# 第五步-acc/loss可视化

plt.title('Loss Function Curve')

plt.xlabel('Epoch')

plt.ylabel('loss')

# plt.rcParams['font.sans-serif'] = ['FangSong']

# plt.rcParams['axes.Unicode_minus'] = False

plt.plot(train_loss_result, label='$Loss$')

plt.legend()

plt.show()

plt.title('Acc Curve')

plt.xlabel('Epoch')

plt.ylabel('Acc')

plt.plot(test_acc, label='$Accuracy$')

plt.legend()

plt.show()

#结果显示

---------------------------

Epoch 499, loss: 0.02722732489928603

Test_acc: 0.9666666666666667

---------------------------

Tensorflow2学习(1)

1 TensorFlow2学习

1.1 张量(Tensor)

1.1.1张量是多维数组(列表),用阶表示张量的维数:维数阶名称例子0-D0scalar 标量s=1 2 3

1-D1vector 向量s=[1,2,3]

2-D2matrix 矩阵s=[[1,2,3],[1,2,3],[1,2,3]]

n-D3tensor 张量s=[[[ ]]] 其中左侧中括号有n个

1.1.2创建一个Tensor

1)tf.constant(张量内容,dtype=数据类型(可选))import tensorflow as tf

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

a = tf.constant([1, 5],dtype=tf.int64)

print(a)

print(a.dtype)

print(a.shape)

#结果显示

tf.Tensor([1 5], shape=(2,), dtype=int64)

(2,)

注:张量的形状看shape的逗号隔开了几个数字,隔开了几个数字,张量就是几维。

2)tf.convert_to_tensor(数据名,dtype=数据类型(可选)) 将numpy的数据类型转换为tensor数据类型。import tensorflow as tf

import numpy as np

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

a = np.arange(0, 5)

b = tf.convert_to_tensor(a, dtype=tf.int64)

print(a)

print(b)

#结果显示

[0 1 2 3 4]

tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)

3)tf.fill(维度,指定值) 创建全为指定值的张量,其中指定值只能为标量。a = tf.fill([2, 3], 9)

print(a)

#结果显示

tf.Tensor(

[[9 9 9]

[9 9 9]], shape=(2, 3), dtype=int32)

4)tf.random.normal(维度,mean=均值,stddev=标准差) 生成正态分布的随机数,默认均值为0,标准差为1

tf.random.truncated_normal(维度,mean=均值,stddev=标准差) 生成截断式正态分布的随机数,生成的数更向均值集中。a = tf.random.normal([2, 2], mean=0.3, stddev=2)

b = tf.random.truncated_normal([2, 2], mean=0.3, stddev=2)

print(a)

print(b)

#结果显示

tf.Tensor(

[[-0.41351897  1.8662729 ]

[ 2.200518    1.3296602 ]], shape=(2, 2), dtype=float32)

tf.Tensor(

[[ 1.5761657  1.201687 ]

[ 1.9042709 -0.7466951]], shape=(2, 2), dtype=float32)

4)tf.random.uniform(维度,minval=最小值,maxval=最大值) 生成均匀分布的随机数,生成数区间是前开后闭区间。a = tf.random.uniform([2, 2], minval=-2, maxval=2)

print(a)

#结果显示

tf.Tensor(

[[ 0.2742386  -0.69904184]

[ 1.3488121  -0.7883253 ]], shape=(2, 2), dtype=float32)

1.2 常用函数

1)tf.cast(张量名,dtype=数据类型) 强制tensor转换为该数据类型

2)tf.reduce_min(张量名) 计算张量维度上元素的最小值

3)tf.reduce_max(张量名) 计算张量维度上元素的最大值x1 = tf.constant([1, 2, 3], dtype=tf.int64)

print(x1)

x2 = tf.cast(x1, tf.float32)

print(x2)

x3 = tf.reduce_min(x1)

x4 = tf.reduce_max(x2)

print(x3, x4)

#结果显示

tf.Tensor([1 2 3], shape=(3,), dtype=int64)

tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32)

tf.Tensor(1, shape=(), dtype=int64) tf.Tensor(3.0, shape=(), dtype=float32)

4)tf.reduce_mean(张量名,axis=操作轴) 计算张量沿着指定维度的平均值,其中axis为1,表示行,为0表示列,若axis没写,则对整个张量求平均,先列求,再行求。

5)tf.reduce_sum(张量名,axis=操作轴) 计算张量沿着指定维度的和。x = tf.constant([[1, 2, 3], [3, 2, 3]], dtype=tf.float32)

print(x)

print(tf.reduce_mean(x), tf.reduce_sum(x, axis=1))

#结果显示

tf.Tensor(

[[1. 2. 3.]

[3. 2. 3.]], shape=(2, 3), dtype=float32)

tf.Tensor(2.3333333, shape=(), dtype=float32) tf.Tensor([6. 8.], shape=(2,), dtype=float32)

6)tf.Variable(初始值) 将变量标记为“可训练”,被标记的变量会在反向传播中记录梯度信息。神经网络训练中,常用该函数标记待训练参数。w = tf.Variable(tf.random.uniform([2, 2], minval=0, maxval=1))

print(x)

#结果显示

array([[0.7305305 , 0.7579589 ],

[0.02064288, 0.32717478]], dtype=float32)>

注:可以用来表示损失函数loss的参数w,即将w标记为可训练变量。

7)tensorflow中的数学运算四则运算:tf.add;tf.subtract;tf.multiply;tf.divide。这些四则运算张量维度必须一样

平方、次方与开方:tf.square;tf.pow;tf.sqrt

矩阵乘:tf.matmul

8)tf.data.Dataset.from_tensor_slices((输入特征,标签)) 切分传入张量的第一维度,生成输入特征/标签对,构建数据集。该方法可以读取numpy与tensor两种格式的数据。feature = tf.constant([1, 3, 10, 24])

labels = tf.constant([0, 0, 1, 1])

dataset = tf.data.Dataset.from_tensor_slices((feature, labels))

print(dataset)

for i in dataset:

print(i)

#结果显示

(, )

(, )

(, )

(, )

9)tf.GradientTape() 用它的with结构记录计算过程,gradient求出张量的梯度,即求导。

其结构一般为:with tf.GradientTape() as tape:

若干个计算过程

grad = tape.gradient(函数, 对谁求导)

下面举个例子:其中损失函数为w的平方,w=3.0with tf.GradientTape() as tape:

w = tf.Variable(3.0)

loss = tf.pow(w, 2)

grad = tape.gradient(loss, w)

print(grad)

#结果显示

tf.Tensor(6.0, shape=(), dtype=float32)

10)enumerate(列表名) 是python的内建函数,它可以遍历每个元素(如列表、元组或字符串),组合形式为:索引 元素,常在for循环中使用。seq = ['one', 'two', 'three']

for i, element in enumerate(seq):

print(i, element)

#结果显示

0 one

1 two

2 three

11)tf.one_hot(待转换数据,depth=几分类) 在分类问题中,用独热码,即one_hot做标签,‘1’表示是,‘0’表示非,将待转换数据,转换为one_hot形式的数据进行输出。classes = 5

labels = tf.constant([1, 2, 3])

output = tf.one_hot(labels, classes)

print(output)

#结果显示

tf.Tensor(

[[0. 1. 0. 0. 0.]

[0. 0. 1. 0. 0.]

[0. 0. 0. 1. 0.]], shape=(3, 5), dtype=float32)

12)tf.nn.softmax(待转换数据) 使n个输出变成0~1的值,且其和为1。y = tf.Variable([1.02, 2.30, -0.19])

y_pro = tf.nn.softmax(y)

print("After softmax, y_pro is:", y_pro)

#结果显示

After softmax, y_pro is: tf.Tensor([0.2042969 0.73478234 0.06092078], shape=(3,), dtype=float32)

13)assign_sub(w要自减的内容) 赋值操作,更新参数的值并返回。要更新的参数的前提是,其是可训练的,即初始w值是variable构建的。w = tf.Variable(3)

w.assign_sub(1) # 实现w-1功能,即自减

print(w)

#结果显示

14)tf.argmax(张量名,axis=操作轴) 返回张量沿指定维度最大值的索引。x = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]])

print(x)

print(tf.argmax(x, axis=1))

print(tf.argmin(x, axis=0))

#结果显示

[[1 2 3]

[2 3 4]

[4 5 6]]

tf.Tensor([2 2 2], shape=(3,), dtype=int64)

tf.Tensor([0 0 0], shape=(3,), dtype=int64)

1.3 简单实践(鸢尾花数据读取与神经网络分类)

1.3.1 鸢尾花数据读取from sklearn import datasets

from pandas import DataFrame

import pandas as pd

x_data = datasets.load_iris().data

y_data = datasets.load_iris().target

#print('鸢尾花数据:\n', x_data)

#print('鸢尾花标签:\n', y_data)

x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])# 将其变成表格形式,并为每一列增加中文标签

pd.set_option('display.unicode.east_asian_width', True)# 设置表格为列名对其

print('鸢尾花数据:\n', x_data)

x_data['类别'] = y_data # 为x_data增加一列类别,即原来定义的y_data

print('增加一列后的表格为:\n', x_data)

#结果显示

鸢尾花数据:

花萼长度 花萼宽度 花瓣长度 花瓣宽度

0 5.1 3.5 1.4 0.2

.. ... ... ... ...

149 5.9 3.0 5.1 1.8

[150 rows x 4 columns]

增加一列后的表格为:

花萼长度 花萼宽度 花瓣长度 花瓣宽度 类别

0 5.1 3.5 1.4 0.2 0

.. ... ... ... ... ...

149 5.9 3.0 5.1 1.8 2

[150 rows x 5 columns]

1.3.2 神经网络分类

实现该功能我们可以分三步走:准备数据数据集读入

数据集乱序

生成训练集和测试集(即x_train/y_train,x_test/y_test)

配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网络中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss注:还可以进行以下操作

1)测试结果计算当前参数前向传播后的准确率,显示当前acc

2)acc/loss可视化

以下为一个神经网络实现鸢尾花分类示例:import tensorflow as tf

from sklearn import datasets

import matplotlib.pyplot as plt

import numpy as np

# 第一步-准备数据-数据读取

x_data = datasets.load_iris().data

y_data = datasets.load_iris().target

# 第一步-准备数据-打乱数据

np.random.seed(1) # 使用相同的seed打乱,保证输入的数据与标签一一对应

np.random.shuffle(x_data) # 生成随机列表

np.random.seed(1)

np.random.shuffle(y_data)

tf.random.set_seed(1)

# 第一步-准备数据-分成训练集和测试集

x_train = x_data[:-30] # 由开头到倒数第30个

y_train = y_data[:-30]

x_test = x_data[-30:] # 由倒数第30个到最后

y_test = y_data[-30:]

# 为防止数据集出现计算上的错误,我们将数据集转换类型

x_train = tf.cast(x_train, dtype=tf.float32)

x_test = tf.cast(x_test, dtype=tf.float32)

# 第一步-准备数据-特征值与标签配对,并以batch形式输入

train_fl = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)

test_fl = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 第二步-搭建网络-定义所有相关参数(这一步可以在训练等模型写完后再完成)

w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1))

b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1))

lr = 0.1 # 学习率为0.1

train_loss_result = [] # 每轮的loss记录于此,为后面的loss图像提供数据

test_acc = [] # 每轮的准确率记录于此,为后面的acc图像提供数据

epoch = 500 # 循环次数

loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 第三步-参数优化-训练模型部分

for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集

for step, (x_train, y_train) in enumerate(train_fl): # batch级别的循环,每个step循环一次batch

with tf.GradientTape() as tape:

y = tf.matmul(x_train, w1) b1 # 全连接层

y = tf.nn.softmax(y) # 输出0~1的真实值

y_ = tf.one_hot(y_train, depth=3) # 预测值

loss = tf.reduce_mean(tf.square(y_ - y)) # 损失函数

loss_all = loss.numpy() # 将每个step计算出的loss累加,为后面求loss平均值提供数据

grads = tape.gradient(loss, [w1, b1])

# 实现w与b的梯度更新:w1=w1-lr*w1_grad ,b1同理

w1.assign_sub(lr * grads[0])

b1.assign_sub(lr * grads[1])

print('Epoch {}, loss: {}'.format(epoch, loss_all/4))

train_loss_result.append(loss_all / 4) # 将4个step的loss求平均记录在变量中

loss_all = 0 # 将loss_all归零,为记录下一个epoch做准备

# 第四步-预测模型部分

total_correct, total_number = 0, 0 # 前者为测试结果为正确的数量,后者为样本总数量,都初始化为0

for x_test, y_test in test_fl: # 因为我们每个step为32,而我们数据只有30个,所以这里不使用enumerate

y = tf.matmul(x_test, w1) b1

y = tf.nn.softmax(y)

pred = tf.argmax(y, axis=1) # 返回预测值中最大的索引,即预测的分类

pred = tf.cast(pred, dtype=y_test.dtype)

correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 预测正确的结果保留下来

correct = tf.reduce_sum(correct)

total_correct = int(correct)

total_number = x_test.shape[0]

acc = total_correct / total_number

test_acc.append(acc)

print('Test_acc:', acc)

print('---------------------------')

# 第五步-acc/loss可视化

plt.title('Loss Function Curve')

plt.xlabel('Epoch')

plt.ylabel('loss')

# plt.rcParams['font.sans-serif'] = ['FangSong']

# plt.rcParams['axes.Unicode_minus'] = False

plt.plot(train_loss_result, label='$Loss$')

plt.legend()

plt.show()

plt.title('Acc Curve')

plt.xlabel('Epoch')

plt.ylabel('Acc')

plt.plot(test_acc, label='$Accuracy$')

plt.legend()

plt.show()

#结果显示

---------------------------

Epoch 499, loss: 0.02722732489928603

Test_acc: 0.9666666666666667

---------------------------

来源:https://www.icode9.com/content-4-719751.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值