
1. 欧式距离与余弦距离的点积表示
- 欧式距离

欧式距离可以通过勾股定理,或者点积来计算:
- 余弦距离

根据线性代数的知识,余弦也可以通过点积和模长来计算:
2. 协方差和相关系数:相关系数本质上就是余弦距离
先假设有两个随机量
由这两个随机量及其均值组成两个向量(可以这么认为,对于随机变量组成的向量,其均值才是原点):
- 样本方差
对于
通过向量表示为:
方差看起来很像是欧式距离
- 样本协方差
对于
通过向量表示为:
结合之前的余弦距离的计算公式,我们可以得到:
从上面的公式我们可以看出,余弦距离与样本协方差成正比,所以协方差已经可以表示两个向量之间的关系了,但是余弦距离还和两个向量模的乘积成反比,即余弦距离还受到向量长度的影响
- 样本相关系数
从上面得到的
我们可以继续往下推导,得到样本相关系数的计算公式:
将它们带入上面的式子可以得到:
而在课本中给我们的样本相关系数的公式为:
所以说,相关系数其实就是之前说的余弦距离,表示事物之间的相关性
参考资料:
如何理解协方差、相关系数和点积?
本文探讨了欧氏距离和余弦距离的数学表示,揭示了相关系数实际上等价于余弦距离。通过随机变量的向量表示,分析了样本方差、协方差和相关系数,指出相关系数是衡量两个向量之间角度关系的余弦值,不受向量长度影响。

被折叠的 条评论
为什么被折叠?



