树是一种非常重要的数据结构,其中二叉树是最常用到的,之前学的时候用的都是c++,很长时间没有用了也忘得差不多了,最近一直都在用Java,所以总结一下怎样用java来实现二叉树的数据结构,用二叉树来存一个数组。
二叉树得特点有以下几个:1. 每个节点最多有两棵子树。2. 左子树和右子树是有顺序的,次序不能任意颠倒。3. 即使树中只有一课子树,也要区分他是左子树还是右子树;
二叉树的遍历:是指从根结点出发,按照某种次序,依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次;二叉树的遍历方式有好多种,如果我们限制了从左到右的习惯方式,那么主要就有以下几种:前序遍历,中序遍历,后序遍历和层序遍历。
二叉树的实现:二叉树也可以通过顺序存储和链式存储来实现;
二叉树的顺序存储就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如父结点与子结点的逻辑关系,子结点与子结点之间的关系;但顺序存储的实用性不强;所以一般采用链式存储;
在Java中,采用类来声明树的节点 如下所示
public class Node
{
private char
key; //
数据
private Node
left, right; //
左右子结点
public
Node(char key)
{
this(key, null, null);
}
public
Node(char key, Node left, Node right)
{
this.key = key;
this.left = left;
this.right = right;
}
public char
getKey()
{
return key;
}
public void
setKey(char key)
{
this.key = key;
}
public Node
getLeft()
{
return left;
}
public void
setLeft(Node left)
{
this.left = left;
}
public Node
getRight()
{
return right;
}
public void
setRight(Node right)
{
this.right = right;
}
}
接下来就是创建一个二叉树,以及对二叉树进行前序遍历,中序遍历,后序遍历和层序遍历。
public class Tree
{
protected
Node root;
public
Tree(Node root)
{
this.root = root;
}
public Node
getRoot()
{
return root;
}
//
初始化,构造二叉树
public
static Node init()
{
Node a = new Node('A');
Node b = new Node('B', null,
a);
Node c = new Node('C');
Node d = new Node('D', b, c);
Node e = new Node('E');
Node f = new Node('F', e,
null);
Node g = new Node('G', null,
f);
Node h = new Node('H', d, g);
return h; //
根结点
}
//
访问节点
public
static void visit(Node p)
{
System.out.print(p.getKey() +
" ");
}
//
递归实现前序遍历
protected
static void preorder(Node p)
{
if (p != null)
{
visit(p);
preorder(p.getLeft());
preorder(p.getRight());
}
}
//
递归实现中序遍历
protected
static void inorder(Node p)
{
if (p != null)
{
inorder(p.getLeft());
visit(p);
inorder(p.getRight());
}
}
//
递归实现后序遍历
protected
static void postorder(Node p)
{
if (p != null)
{
postorder(p.getLeft());
postorder(p.getRight());
visit(p);
}
}
//
非递归实现前序遍历
protected
static void iterativePreorder(Node p)
{
Stack stack = new Stack();
if (p != null)
{
stack.push(p);
while (!stack.empty())
{
p =
stack.pop();
visit(p);
if
(p.getRight() != null)
stack.push(p.getRight());
if
(p.getLeft() != null)
stack.push(p.getLeft());
}
}
}
//
非递归实现后序遍历
protected
static void iterativePostorder(Node p)
{
Node q = p;
Stack stack = new Stack();
while (p != null)
{
// 左子树入栈
for (; p.getLeft() != null; p = p.getLeft())
stack.push(p);
// 当前结点无右子结点或右子结点已经输出
while (p != null && (p.getRight() ==
null || p.getRight() == q))
{
visit(p);
q = p;
// 记录上一个已输出结点
if
(stack.empty())
return;
p =
stack.pop();
}
// 处理右子结点
stack.push(p);
p = p.getRight();
}
}
//
非递归实现中序遍历
protected
static void iterativeInorder(Node p)
{
Stack stack = new Stack();
while (p != null)
{
while (p != null)
{
if
(p.getRight() != null)
stack.push(p.getRight());
// 当前结点右子结点入栈
stack.push(p); // 当前结点入栈
p =
p.getLeft();
}
p = stack.pop();
while (!stack.empty() && p.getRight() ==
null)
{
visit(p);
p =
stack.pop();
}
visit(p);
if (!stack.empty())
p =
stack.pop();
else
p = null;
}
}
}