perfect squares java,[Leetcode] Perfect Squares 完美平方数

Perfect Squares

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.

动态规划

复杂度

时间 O(N^2) 空间 O(N)

思路

如果一个数x可以表示为一个任意数a加上一个平方数bxb,也就是x=a+bxb,那么能组成这个数x最少的平方数个数,就是能组成a最少的平方数个数加上1(因为b*b已经是平方数了)。

代码

public class Solution {

public int numSquares(int n) {

int[] dp = new int[n+1];

// 将所有非平方数的结果置最大,保证之后比较的时候不被选中

Arrays.fill(dp, Integer.MAX_VALUE);

// 将所有平方数的结果置1

for(int i = 0; i * i <= n; i++){

dp[i * i] = 1;

}

// 从小到大找任意数a

for(int a = 0; a <= n; a++){

// 从小到大找平方数bxb

for(int b = 0; a + b * b <= n; b++){

// 因为a+b*b可能本身就是平方数,所以我们要取两个中较小的

dp[a + b * b] = Math.min(dp[a] + 1, dp[a + b * b]);

}

}

return dp[n];

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值