
《锻造行业智能制造发展回顾及新技术展望》(上)见《锻造与冲压》2020 年第19 期
K 近邻算法在锻造领域的研究
人工智能中的机器学习

图7 人工智能的划分领域
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,该领域的研究包含计算智能、机器感知、机器学习等,如图7 所示。机器学习作为人工智能的一类,它是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习在工业中的典型应用场景为:工况模式识别、设备故障诊断、产品质量分类等。本文将从机器学习中的K 近邻算法来对锻造领域进行研究与探讨。
K 近邻算法
K 近邻法(k-nearest neighbors)是机器学习中较基础的一类算法,它是由Cover 和Hart 于1968 年提出的,是懒惰学习(lazy learning)的著名代表。K 近邻算法中每个数据都存在一个标签(label),即数据的最终特征,此外还包含了影响数据特征的各影响因素,K 近邻算法的工作机制如下:首先给定一个测试样本,计算它到训练样本的距离,然后取离测试样本最近的k 个训练样本,最终用“投票法”选出在这k个样本中出现最多的类别,就是预测的结果。样本可以根据比例分为训练集与测试集,训练集负责用于模型的训练,测试集负责模型的实际测试,测试集中测试成功数量与测试集总数量之比为准确率,准确率也是衡量K 近邻算法好坏的唯一标准。图8 是笔者运用传统K 近邻算法训练传统Mnist 数据集的程序。Mnist数据集是K 近邻算法的基础数据集,共有70000 条数据,每个数据集都是由人为手写的数字构成,每条数据共含有784 条特征。其中,此程序用了20000 个数据集作为测试,50000 个数据集作为训练,模型的准确率达到了97.6%,如图9 所示,机器通过图片将手写的‘8’识别了出来。