题目描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树
平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
数据结构 TreeNode 的定义:
牛客编程题高级数据结构格式说明_牛客博客blog.nowcoder.net解题思路及代码
方法一:自顶向下
首先想办法求出左右子树的高度。
我们使用 map<TreeNode*, int>
来存储每个结点的树的高度。
代码如下:
map<TreeNode*, int> hs;
int depth(TreeNode *root) {
if (!root) return 0;
if (hs.find(root) != hs.end()) return hs[root];
int ldep = depth(root->left);
int rdep = depth(root->right);
return hs[root] = max(ldep, rdep) + 1;
}
然后我们再根据左右子树的高度差以及左右子树是否为平衡二叉树这三个条件来综合判断以当前结点为根的二叉树是否满足条件。
代码如下:
bool judge(TreeNode *root) {
if (!root) return true;
return abs(hs[root->left] - hs[root->right]) <= 1 &&
judge(root->left) && judge(root->right);
}
综合起来,最后的代码为:
class Solution {
public:
map<TreeNode*, int> hs;
int depth(TreeNode *root) {
if (!root) return 0;
if (hs.find(root) != hs.end()) return hs[root];
int ldep = depth(root->left);
int rdep = depth(root->right);
return hs[root] = max(ldep, rdep) + 1;
}
bool judge(TreeNode *root) {
if (!root) return true;
return abs(hs[root->left] - hs[root->right]) <= 1 &&
judge(root->left) && judge(root->right);
}
bool IsBalanced_Solution(TreeNode* root) {
depth(root);
return judge(root);
}
};
时间复杂度:O(N)
空间复杂度:O(N)
方法二:自底向上
思想是在求高度的同时,直接判断是否为平衡二叉树。
首先求树的高度的代码为:
int depth(TreeNode *root) {
if (!root) return 0;
int ldep = depth(root->left);
int rdep = depth(root->right);
return max(ldep, rdep) + 1;
}
然后对上述代码加以改造,如果不满足平衡二叉树的定义,则返回-1,并且如果左子树不满足条件了,直接返回-1,右子树也是如此,相当于剪枝,加速结束递归。
int depth(TreeNode *root) {
if (!root) return 0;
int ldep = depth(root->left);
if (ldep == -1) return -1;
int rdep = depth(root->right);
if (rdep == -1) return -1;
int sub = abs(ldep - rdep);
if (sub > 1) return -1;
return max(ldep, rdep) + 1;
}
最后只需要判断depth(root)返回的是否为-1,如果是-1,则不是,否则,则是。
代码如下:
class Solution {
public:
int depth(TreeNode *root) {
if (!root) return 0;
int ldep = depth(root->left);
if (ldep == -1) return -1;
int rdep = depth(root->right);
if (rdep == -1) return -1;
int sub = abs(ldep - rdep);
if (sub > 1) return -1;
return max(ldep, rdep) + 1;
}
bool IsBalanced_Solution(TreeNode* root) {
return depth(root) != -1;
}
};
Java 版:
private boolean isBalanced = true;
public boolean IsBalanced_Solution(TreeNode root) {
height(root);
return isBalanced;
}
private int height(TreeNode root) {
if (root == null || !isBalanced)
return 0;
int left = height(root.left);
int right = height(root.right);
if (Math.abs(left - right) > 1)
isBalanced = false;
return 1 + Math.max(left, right);
}
时间复杂度:O(N)
空间复杂度:O(N)
解析参考来自:
平衡二叉树_牛客网www.nowcoder.com