二叉树剪枝_平衡二叉树

本文介绍了如何判断一棵二叉树是否是平衡二叉树,提供了两种不同的实现方法:自顶向下和自底向上。这两种方法的时间复杂度均为O(N),空间复杂度也为O(N)。在实现中,通过计算节点的左右子树高度并比较它们的差值,结合递归判断子树是否平衡,从而确定整个二叉树的平衡状态。
摘要由CSDN通过智能技术生成

e64061a04d354eaa39e006b558fa8ac0.png

题目描述

输入一棵二叉树,判断该二叉树是否是平衡二叉树。

在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树

平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

58c0576ade7c37deb6dd43c2171aa5a6.png

数据结构 TreeNode 的定义:

牛客编程题高级数据结构格式说明_牛客博客​blog.nowcoder.net
ed30d16c35a565f1892f7338c1405f3f.png

解题思路及代码

方法一:自顶向下

首先想办法求出左右子树的高度。

我们使用 map<TreeNode*, int> 来存储每个结点的树的高度。

代码如下:

map<TreeNode*, int> hs;
int depth(TreeNode *root) {
    if (!root) return 0;
    if (hs.find(root) != hs.end()) return hs[root];
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return hs[root] = max(ldep, rdep) + 1;
}

然后我们再根据左右子树的高度差以及左右子树是否为平衡二叉树这三个条件来综合判断以当前结点为根的二叉树是否满足条件。

代码如下:

bool judge(TreeNode *root) {
    if (!root) return true;
    return abs(hs[root->left] - hs[root->right]) <= 1 && 
    judge(root->left) && judge(root->right);
}

综合起来,最后的代码为:

class Solution {
public:
    map<TreeNode*, int> hs;
    int depth(TreeNode *root) {
        if (!root) return 0;
        if (hs.find(root) != hs.end()) return hs[root];
        int ldep = depth(root->left);
        int rdep = depth(root->right);
        return hs[root] = max(ldep, rdep) + 1;
    }
    bool judge(TreeNode *root) {
        if (!root) return true;
        return abs(hs[root->left] - hs[root->right]) <= 1 && 
        judge(root->left) && judge(root->right);
    }
    bool IsBalanced_Solution(TreeNode* root) {
        depth(root);
        return judge(root);
    }
};

时间复杂度:O(N)

空间复杂度:O(N)

方法二:自底向上

思想是在求高度的同时,直接判断是否为平衡二叉树。

首先求树的高度的代码为:

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return max(ldep, rdep) + 1;
}

然后对上述代码加以改造,如果不满足平衡二叉树的定义,则返回-1,并且如果左子树不满足条件了,直接返回-1,右子树也是如此,相当于剪枝,加速结束递归。

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    if (ldep == -1) return -1;
    int rdep = depth(root->right);
    if (rdep == -1) return -1;
    int sub = abs(ldep - rdep);
    if (sub > 1) return -1;
    return max(ldep, rdep) + 1;
}

最后只需要判断depth(root)返回的是否为-1,如果是-1,则不是,否则,则是。

代码如下:

class Solution {
public:
    int depth(TreeNode *root) {
        if (!root) return 0;
        int ldep = depth(root->left);
        if (ldep == -1) return -1;
        int rdep = depth(root->right);
        if (rdep == -1) return -1;
        int sub = abs(ldep - rdep);
        if (sub > 1) return -1;
        return max(ldep, rdep) + 1;
    }
    bool IsBalanced_Solution(TreeNode* root) {
        return depth(root) != -1;
    }
};

Java 版:

private boolean isBalanced = true;

public boolean IsBalanced_Solution(TreeNode root) {
    height(root);
    return isBalanced;
}

private int height(TreeNode root) {
    if (root == null || !isBalanced)
        return 0;
    int left = height(root.left);
    int right = height(root.right);
    if (Math.abs(left - right) > 1)
        isBalanced = false;
    return 1 + Math.max(left, right);
}

时间复杂度:O(N)

空间复杂度:O(N)


解析参考来自:

平衡二叉树_牛客网​www.nowcoder.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值