今天与大家分享一道有关递推数列问题的原创试题。数列是高中数学重要的内容之一,也是高考的重点,在高考试卷中多以中档题出现,在高考解答题中,与三角函数交替出现。在2019年高考全国二卷理科试题中,有关数列的解答题的位置后移,作为解答题第三题的顺序出现,因此试题的难度也较往年有所提升。在有关数列的问题中,等差数列与等比数列是两类最基本的数列形式,在此基础还可以衍生出其他类型的数列,比如以数列通项和数列之和形式构成的递推数列,关于这类问题,求解的关键仍然是后通过递推关系将数列转化为等差数列或等比数列的形式,然后再利用数列的通项公式或求和公式进行求解。其中,涉及到数列前n项和Sn的递推关系式,常用Sn-Sn-1=an来替换;此外一些复杂的递推关系常用到叠加法、构造法进行转化。
本题在求解时,通过两次构造等比数列对原递推关系式进行逐层分解,求得的结果如果为一个较为复杂的式子的时候,不妨将n=1带入数列的通项公式,通过比较首项的值进行检验。试题的第2问涉及到奇偶项的讨论,需分开讨论。
更多高考原创试题请关注今日头条“涛哥讲数学”。
