POJ 1321 棋盘问题
题目链接:https://vjudge.net/problem/POJ-1321
题目描述:
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input:
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output:
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input:
2 1
#.
.#
4 4
…#
…#.
.#…
#…
Sample Output:
2
1
这道题就是典型的回溯题,遍历每一行,找到每一列可以放棋子的位子,直到放满为止。
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 10;
char board[maxn][maxn];
bool vis[maxn];
int n, k;
int ans;
void backtracking(int cur_r, int cur_k) {
if (cur_k >= k) { ans ++; return;}
if (cur_r >= n) return;
for (int cur_c = 0; cur_c < n; cur_c ++) {
if (!vis[cur_c] && board[cur_r][cur_c] == '#') {
vis[cur_c] = true;
backtracking(cur_r + 1, cur_k + 1); // 选择当前行该位置
vis[cur_c] = false;
}
}
backtracking(cur_r + 1, cur_k); // 跳过当前行
}
int main() {
while (cin >> n >> k) {
if (n == -1 && k == -1) break;
for (int i = 0; i < n; i ++) cin >> board[i];
// init
memset(vis, 0, sizeof(vis));
ans = 0;
backtracking(0, 0);
cout << ans << endl;
}
return 0;
}