高中计算机奥林匹克竞赛试题及答案,高中数学奥林匹克竞赛试题及答案.doc

一系列数学问题展示了数论中关于平方数和整数的有趣性质,包括四位数的平方形式、完全平方数的性质、素数与完全平方数的关系、不可分解的数以及数列中的特定元素。这些问题揭示了数学在解决抽象问题时的精妙之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.

.

1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方. 1956年波兰.

x=1000a+100a+10b+b=11(100a+b)

其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.

2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方. 1953年匈牙利.

【证 设2n2=kd,k是正整数,如果 n2+d是整数 x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)

但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.

3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数. 1962年上海高三决赛题 .

【证】 四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1

因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.?4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数. 1963年俄

【证】 设此算术级数公差是 d,且其中一项 a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2

对于任何k∈N,都是该算术级数中的项,且又是完全平方数.

5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.

【解】 设 n2满足条件,令n2=100a2+b,其中 0<b<100.于是 n>10a,即 n≥10a+1.因此b=n2100a2≥20a+1

由此得??20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.

6 求所有的素数p,使4p2+1和6p2+1也是素数. 1964年波兰

【解】 当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.

7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数. 1969德国.

【证】 对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)

而????n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故 n4+4m4不是素数.取 a=4·24,4·34,…就得到无限多个符合要求的 a.

8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数. 1970年苏

【证】 假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!

9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数. 1973年加拿大

【证】 因p是奇数,2是p+1的因数.因为p、p+1、p+2除以 3余数不同,p、p+2都不被 3整除,所以p+1被 3整除.

10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的). 美国1973年

【证】 设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,

消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m

11 设n为大于2的已知整数,并设Vn为整数1+kn的集合,k=1,2,….数m∈Vn称为在 Vn中不可分解,如果不存在数p,q∈Vn使得 pq=m.证明:存在一个数r∈Vn可用多于一种方法表达成Vn中不可分解的元素的乘积. 1977年荷兰

【证】 设a=n-1,b=2n-1,则a2、b2、a2b2都属于Vn.因为a2<(n+1)2,所以a2在Vn中不可分解.

式中不会出现a2.

r=a2b2有两种不同的分解方式:r=a2·b2=a2…(直至b2分成不可分解的元素之积)与r=ab·ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.

12 证明在无限整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值