l2范数求导_向量的L2范数求导

本文介绍了最小二乘法在回归问题中的应用,并详细阐述了L2范数的定义和计算。通过矩阵求导,解析了损失函数(J_{LS}( heta))关于参数( heta)的导数,得到(J_{LS}'( heta)=A^TA x-A^Tb=A^T(Ax-b)),这在优化过程中至关重要。
摘要由CSDN通过智能技术生成

回归中最为基础的方法, 最小二乘法.

\[\begin{align*}

J_{LS}{(\theta)} &= \frac { 1 }{ 2 } { \left\| A\vec { x } -\vec { b } \right\| }^{ 2 }\quad \\

\end{align*}

\]

向量的范数定义

\[\begin{align*}

\vec x &= [x_1,\cdots,x_n]^{\rm T}\\

\|\vec x\|_p &= \left( \sum_{i=1}^m{|x_i|^p}\right)^\frac{1}{p}, \space p

\end{align*}

\]

\(L_2\)范数具体为

\[\|\vec x\|_2 = (|x_1|^2 + \cdots+|x_m|^2)^{\frac{1}2} = \sqrt{\vec x ^{\rm T}\vec x }

\]

矩阵求导

采用列向量形式定义的偏导算子称为列向量偏导算子, 习惯称为\(\color {red} {梯度算子}\), n x 1 列向量偏导算子即梯度算子记作 \(\nabla_x\), 定义为

\[\nabla_x = \frac{\partial}{\partial x} = \left[ \frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\right] ^{\rm T}

\]

如果\(\vec x 是一个n\times 1\text{的列向量}\), 那么

\[\begin{eqnarray}

\frac{\partial y x}{\partial x}&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值