背景
平时用时知道有相应的设置及相应的原理,具体设置时又不好查找,现特此整理出来供大家收藏
代码可左右滑动查看
Anaconda
1pip list
2#或者
3conda list
4#其中,pip list 只能查看库,而 conda list 则可以查看库以及库的版本
5
6
7pip install scipy
8pip install scipy --upgrade
9# 或者
10conda install scipy
11conda update scipy
12
13# 更新所有库
14conda update --all
15
16# 更新 conda 自身
17conda update conda
18
19# 更新 anaconda 自身
20conda update anaconda
jupyter
1#显示所有列
2pd.set_option('display.max_columns', None)
3
4#显示所有行
5pd.set_option('display.max_rows', None)
6
7#设置value的显示长度为100,默认为50
8pd.set_option('max_colwidth',100)
9
10#内嵌画图
11%matplotlib inline
12
13#单独画图
14%matplotlib qt
15
16#画图中文乱码、负号
17plt.rcParams['font.sans-serif']=['Microsoft YaHei']
18plt.rcParams['axes.unicode_minus']=False
19
20#让一个cell同时有多个输出print
21from IPython.core.interactiveshell import InteractiveShell
22InteractiveShell.ast_node_interactivity = "all"
主要的数据分析包
1import numpy as np
2import pandas as pd
3import matplotlib.pyplot as plt
4from matplotlib.figure import SubplotParams
5#我们使用SubplotParams 调整了子图的竖直间距
6#plt.figure(figsize=(12, 6), dpi=200, subplotpars=SubplotParams(hspace=0.3))
7
8import scipy.stats as stats
9import seaborn as sns
10import statsmodels.api as sm
Sklearn
1from sklearn import datasets #本地数据
2from sklearn.model_selection import train_test_split #进行数据分割
3
4from sklearn.feature_extraction import DictVectorizer #特征抽取和向量化
5from sklearn.preprocessing import PolynomialFeatures #多项式特征构造
6
7from sklearn.feature_selection import VarianceThreshold #基于方差特征选择
8from sklearn.feature_selection import SelectKBest,SelectPercentile #特征选择
9#For classification: chi2, f_classif, mutual_info_classif
10#For regression: f_regression, mutual_info_regression
11from sklearn.feature_selection import RFE #递归特征消除 (Recursive Feature Elimination)
12from sklearn.feature_selection import SelectFromModel #基于模型选择特征
13
14from sklearn.decomposition import PCA #主成分分析
15from sklearn.manifold import MDS #多维尺度分析
16from sklearn.manifold import TSNE #T分布和随机近邻嵌入
17
18from sklearn.pipeline import Pipeline #管道
19from sklearn import metrics #模型评估
20from sklearn.model_selection import GridSearchCV #网格搜索交叉验证
21from sklearn.model_selection import KFold #K折交叉验证
22from sklearn.model_selection import cross_val_score #交叉验证
23
24from sklearn.linear_model import LinearRegression #线性回归
25
26from sklearn.linear_model import LogisticRegression #逻辑回归
27
28from sklearn import svm #支持向量机
29
30from sklearn.tree import DecisionTreeClassifier #决策树
31from sklearn.ensemble import RandomForestClassifier #随机森林
32from sklearn.ensemble import GradientBoostingClassifier #梯度提升树
33
34from sklearn.naive_bayes import MultinomialNB #多项式朴素贝叶斯
35from sklearn.naive_bayes import BernoulliNB #伯努利朴素贝叶斯
36from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯
37
38from sklearn.neighbors import KNeighborsClassifier #k紧邻
39
40from sklearn.cluster import KMeans #k均值聚类
41from sklearn.cluster import DBSCAN #基于密度的空间聚类
42from sklearn.cluster import SpectralClustering #谱聚类
43from sklearn.cluster import Birch #层次聚类
44
45from sklearn.externals import joblib #保存模型
参考自: 微信公众号 数据人阿多DataShare2019-12-18