python各类语言_Python 各种常用语句汇总

背景

平时用时知道有相应的设置及相应的原理,具体设置时又不好查找,现特此整理出来供大家收藏

代码可左右滑动查看

Anaconda

1pip list

2#或者

3conda list

4#其中,pip list 只能查看库,而 conda list 则可以查看库以及库的版本

5

6

7pip install scipy

8pip install scipy --upgrade

9# 或者

10conda install scipy

11conda update scipy

12

13# 更新所有库

14conda update --all

15

16# 更新 conda 自身

17conda update conda

18

19# 更新 anaconda 自身

20conda update anaconda

jupyter

1#显示所有列

2pd.set_option('display.max_columns', None)

3

4#显示所有行

5pd.set_option('display.max_rows', None)

6

7#设置value的显示长度为100,默认为50

8pd.set_option('max_colwidth',100)

9

10#内嵌画图

11%matplotlib inline

12

13#单独画图

14%matplotlib qt

15

16#画图中文乱码、负号

17plt.rcParams['font.sans-serif']=['Microsoft YaHei']

18plt.rcParams['axes.unicode_minus']=False

19

20#让一个cell同时有多个输出print

21from IPython.core.interactiveshell import InteractiveShell

22InteractiveShell.ast_node_interactivity = "all"

主要的数据分析包

1import numpy as np

2import pandas as pd

3import matplotlib.pyplot as plt

4from matplotlib.figure import SubplotParams

5#我们使用SubplotParams 调整了子图的竖直间距

6#plt.figure(figsize=(12, 6), dpi=200, subplotpars=SubplotParams(hspace=0.3))

7

8import scipy.stats as stats

9import seaborn as sns

10import statsmodels.api as sm

Sklearn

1from sklearn import datasets #本地数据

2from sklearn.model_selection import train_test_split #进行数据分割

3

4from sklearn.feature_extraction import DictVectorizer #特征抽取和向量化

5from sklearn.preprocessing import PolynomialFeatures #多项式特征构造

6

7from sklearn.feature_selection import VarianceThreshold #基于方差特征选择

8from sklearn.feature_selection import SelectKBest,SelectPercentile #特征选择

9#For classification: chi2, f_classif, mutual_info_classif

10#For regression: f_regression, mutual_info_regression

11from sklearn.feature_selection import RFE #递归特征消除 (Recursive Feature Elimination)

12from sklearn.feature_selection import SelectFromModel #基于模型选择特征

13

14from sklearn.decomposition import PCA #主成分分析

15from sklearn.manifold import MDS #多维尺度分析

16from sklearn.manifold import TSNE #T分布和随机近邻嵌入

17

18from sklearn.pipeline import Pipeline #管道

19from sklearn import metrics #模型评估

20from sklearn.model_selection import GridSearchCV #网格搜索交叉验证

21from sklearn.model_selection import KFold #K折交叉验证

22from sklearn.model_selection import cross_val_score #交叉验证

23

24from sklearn.linear_model import LinearRegression #线性回归

25

26from sklearn.linear_model import LogisticRegression #逻辑回归

27

28from sklearn import svm #支持向量机

29

30from sklearn.tree import DecisionTreeClassifier #决策树

31from sklearn.ensemble import RandomForestClassifier #随机森林

32from sklearn.ensemble import GradientBoostingClassifier #梯度提升树

33

34from sklearn.naive_bayes import MultinomialNB #多项式朴素贝叶斯

35from sklearn.naive_bayes import BernoulliNB #伯努利朴素贝叶斯

36from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯

37

38from sklearn.neighbors import KNeighborsClassifier #k紧邻

39

40from sklearn.cluster import KMeans #k均值聚类

41from sklearn.cluster import DBSCAN #基于密度的空间聚类

42from sklearn.cluster import SpectralClustering #谱聚类

43from sklearn.cluster import Birch #层次聚类

44

45from sklearn.externals import joblib #保存模型

参考自: 微信公众号  数据人阿多DataShare2019-12-18

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值