复化科特斯公式matlab_牛顿科特斯公式要点分析.ppt

证明:1)确定代数精度为3. 2)令 3) N=2时的牛-柯公式 由前面结论知:二阶的牛—柯公式至少具有二次代数精度。进一步用 进行检验,计算得 重要结论 例3 用辛普森公式和柯特斯公式计算定积分 的近似值,并估计其误差(计算结果取5位小数) 解: 辛普森公式 由于 由辛普森公式余项 知其误差为 解:柯特斯公式 知其误差为 该定积分的准确值 ,这个例子告诉我们,对于同一个积分,当n≥2时,公式却是精确的,这是由于辛普森公式具有三次代数精度,柯特斯公式具有五次代数精度,它们对被积函数为三次多项式当然是精确成立的。 二、复化求积公式 由梯形、辛普森和柯特斯求积公式余项可知,随着求积节点数的增多,对应公式的精度也会相应提高。但由于n≥8时的牛顿—柯特斯求积公式开始出现负值的柯特斯系数。根据误差理论的分析研究,当积分公式出现负系数时,可能导致舍入误差增大,并且往往难以估计。因此不能用增加求积节点数的方法来提高计算精度。在实际应用中,通常将积分区间分成若干个小区间,在每个小区间上采用低阶求积公式,然后把所有小区间上的计算结果加起来得到整个区间上的求积公式,这就是复化求积公式的基本思想。常用的复化求积公式有复化梯形公式和复化辛普森公式。 复化梯形公式: 情形1 求和可得 复化梯形公式 复化梯形 公式 复化梯形公式 由梯形公式的余项公式,有 复化梯形余项公式 复化梯形公式收敛性和稳定性 公式中积分系数大于零复化梯形公式是数值稳定的。 复化辛普森求积公式 情形2 复化辛普森公式 复化辛普森公式 复化辛普森公式 复化辛普森公式的余项公式 注意 复化辛普森公式收敛性和稳定性 例4 解 NIntegrate[Sin[1/x],{x,1,1.5}] 答案: 0.360811 估计误差: 注意 若使用梯形公式 解 例5 把积分区间[1,1.5]10等分,使用复化辛普森公式 估计误差 这说明使用复化梯形公式计算量比复化辛普森公式大得多 用误差估计公式不仅可以计算所求近似值的误差,还可由给定的精度估计应取多大的步长。 例6 若用复化求积公式计算积分 的近似值,要求计算结果有四位有效数字,n应取多大? 解 所以若用复化梯形公式,n应等于41才达到精度 若用复化辛普森公式,则 主要内容: 1:牛顿-柯特斯公式 2:复化梯形公式 3:复化辛普森求积公式 本 节 小 结 §4.2 牛顿-科特斯公式 一、 数值求积的基本思想 二、 数值求积分的一般形式 三、插值型的求积公式 四、代数精度问题 五、求积公式的余项 六、求积公式的收敛性和稳定性 复习回顾 利用函数在有限个结点处的函数值去计算的积分! 1)基本思想: 2)数值积分的一般形式: 3)插值型求积公式: 此求积公式的截断误差为: 4)代数精度: 只要当 分别为 时,求积公式精确成立,而当 不能成立. 证明…… 5) 求积公式的余项: 1) 基于代数精度证明 2) 基于插值余项证明 6) 积分公式的收敛性和稳定性 定理:若求积公式中系数 ,则此求积公式是稳定的。 一、 牛顿-科特斯公式 二、 复化梯形公式 三、 复化辛普森求积公式 主要内容 一、 牛顿-柯特斯求积公式 称为牛顿-柯特斯公式. 求 积 公 式 梯形公式 求 积 公 式 误 差 估 计 求 积 公 式 误 差 估 计 辛普森公式的几何意义: 几 何 意 义 Cotes系数表可用程序得到 Cotes系数表 解:由梯形公式 截断误差为: 由辛普森公式 截断误差为: 例1 分别用梯形公式与辛普森公式计算积分 的近似值并估计误差。 例 题 1 例2 分别用梯形公式、辛普森公式和柯特斯 公式计算定积分 的近似值 (计算结果取5位有效数字) (1) 用梯形公式计算 (2) 用辛普森公式 (3) 用柯特斯公式计算,系数为 积分的准确值为 可见,三个求积公式的精度逐渐提高。 定理:当阶n为偶数时,牛顿-科特斯求积公式至少具有n+1次代数精确度。 重要结论 N=1时的牛-柯公式 余项为: 重要结论

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值