日期格式数据处理
Pandas中使用to_datetime()方法将文本格式转换为日期格式
dataframe数据类型如果为datetime64,可以使用dt方法取出年月日等
对于时间差数据,可以使用timedelta函数将其转换为指定时间单位的数值
时间差数据,可以使用dt方法访问其常用属性
import pandas as pd
import numpy as np
import os
os.getcwd()
'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据转换'
os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据')
df = pd.read_csv('baby_trade_history.csv', encoding='utf-8', dtype={'user_id':str})
df.head(5)
user_id
auction_id
cat_id
cat1
property
buy_mount
day
0
786295544
41098319944
50014866
50022520
21458:86755362;13023209:3593274;10984217:21985...
2
20140919
1
532110457
17916191097
50011993
28
21458:11399317;1628862:3251296;21475:137325;16...
1
20131011
2
249013725
21896936223
50012461
50014815
21458:30992;1628665:92012;1628665:3233938;1628...
1
20131011
3
917056007
12515996043
50018831
50014815
21458:15841995;21956:3494076;27000458:59723383...
2
20141023
4
444069173
20487688075
50013636
50008168
21458:30992;13658074:3323064;1628665:3233941;1...
1<