因子分析累计贡献率_累计方差贡献率_spss累计方差贡献率_因子分析方差贡献率...

本文介绍了如何在SPSS中计算因子分析的方差贡献率和累计方差贡献率。方差贡献率衡量单个因子的影响,而累计方差贡献率则表示所有因子的综合影响。当累计方差贡献率低时,可能由于变量相关性分散或样本质量问题。建议调整因子数量、剔除低因子载荷变量或重新收集数据来改善。在实际应用中,贡献率达到50%即可。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spss中因子方差贡献率–怎样用SPSS求方差贡献率和方差累计贡献率

analyze 下面选择 diemnsion reducation ,再选择factor 因子分析,把你需要计算方差贡献率的变量放到右侧的框里,点击OK,结果里有1张表,就是这些变量的方差贡献率和方差累计贡献率

在SPSS中累计方差贡献率和方差贡献率是什么关系

方差贡献率是指单个公因子引起的变异占总变异的比例,说明此公因子对因变量的影响力大小;

累计方差贡献率是所有公因子引起的变异占总变异比例,说明所有公因子对因变量的合计影响力。

两者的关系是: 各方差贡献率相加和 等于 累计方差贡献率

于因子分析问题,累计方差贡献率低是什么问题?

在做探索性因子分析前的KMO和Bartlett球体检验结果如下:

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.      .958

Bartlett’s Test of Sphericity Approx. Chi-Square     8.361E3

df     1035

Sig.     .000

但因子分析得出5个因素的方差累计贡献率只有66.5%,是什么原因?是问卷质量低还是数据质量低?

具体是哪方面的问题?

解答:KMO和巴特利特球形检验受样本量的影响很大一般来说只要样本量足够大大于200吧,KMO和球形检验都会通过,因子贡献率受你的题项或者共变关系的影响,你在看看吧

将数据随机选取部分进行再分析看如何

如果不行的话࿰

### SPSS 中进行双因素方差分析并计算因子贡献率的方法 #### 数据准备与导入 为了执行双因素方差分析,在SPSS中需先准备好数据文件。确保每一列代表一个变量,而每行对应于一次观测记录。 #### 执行双因素方差分析 进入`Analyze -> General Linear Model -> Univariate`菜单选项[^1]。在此界面内指定因变量(Dependent Variable),并将两个自变量分别放入固定因子(Fixed Factor(s))框中。这一步骤定义了要考察的主要效应及其交互作用。 #### 获取方差贡献率 完成上述设置后继续前进至输出阶段。在结果窗口中寻找“Tests of Between-Subjects Effects”的表格,该表提供了各个源对于总变异性的解释比例——即所谓的平方和分解[^2]。具体到每个主效应及它们之间的相互影响部分所占的比例可以视为各自对方差的相对贡献度。 #### 解读累积方差贡献率 当涉及到因子分析时,累积方差贡献率反映了提取出来的公共因子所能表达原始变量信息总量的程度。通常情况下,希望前几个因子能覆盖大部分的信息量;例如,在某些应用场景下可能期望达到80%以上[^4]。然而需要注意的是,这里讨论的是广义上的概念而非严格意义上的‘双因素’情境下的术语应用。 ```spss GLM y BY factorA factorB /DESIGN=factorA factorB factorA*factorB. ``` 此命令用于运行带有两分类独立变量(factorA 和 factorB) 的一般线性模型(GLM),其中y 是连续型响应变量。通过这种方式可以获得关于这两个因素单独以及共同作用效果的相关统计信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值