python 动态检测人脸_Python学习案例之视频人脸检测识别

本文介绍了如何使用Python的OpenCV库进行视频中的人脸检测和识别,通过读取视频流,利用haar特征分类器识别人脸,并将检测到的人脸截图保存。示例代码演示了从视频文件中连续截取100张人脸图片的过程,同时提供了针对摄像头实时检测的代码修改建议。
摘要由CSDN通过智能技术生成

前言

上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统、人脸动态跟踪识别系统等等。

案例

这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸。

代码实现:

# -*- coding: utf-8 -*-__author__ = "小柒"__blog__ = "https://blog.52itstyle.vip/"import cv2import os# 保存好的视频检测人脸并截图def CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name):

cv2.namedWindow(window_name)    # 视频来源

cap = cv2.VideoCapture(camera_idx)    # 告诉OpenCV使用人脸识别分类器

classfier = cv2.CascadeClassifier(os.getcwd()+"\\haarcascade\\haarcascade_frontalface_alt.xml")    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组

color = (0, 255, 0)

num = 0

while cap.isOpened():

ok, frame = cap.read()  # 读取一帧数据

if not ok:            break

grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 将当前桢图像转换成灰度图像

# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数

faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))        if len(faceRects) > 0:  # 大于0则检测到人脸

for faceRect in faceRects:  # 单独框出每一张人脸

x, y, w, h = faceRect                # 将当前帧保存为图片

img_name = "%s/%d.jpg" % (path_name, num)                # print(img_name)

image = frame[y - 10: y + h + 10, x - 10: x + w + 10]

cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])

num += 1

if num > (catch_pic_num):  # 如果超过指定最大保存数量退出循环

break

# 画出矩形框

cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)                # 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着

font = cv2.FONT_HERSHEY_SIMPLEX

cv2.putText(frame, 'num:%d/100' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)                # 超过指定最大保存数量结束程序

if num > (catch_pic_num): break

# 显示图像

cv2.imshow(window_name, frame)

c = cv2.waitKey(10)        if c & 0xFF == ord('q'):            break

# 释放摄像头并销毁所有窗口

cap.release()

cv2.destroyAllWindows()if __name__ == '__main__':    # 连续截100张图像

CatchPICFromVideo("get face", os.getcwd()+"\\video\\kelake.mp4", 100, "E:\\VideoCapture")

动图有点花,讲究着看吧:

b38112f1a433b7182a9504d1dc9cd133.gif

如果是捕捉摄像头,只需要改变以下代码即可:

# 如果获取摄像头,参数修改为 0 即可cap = cv2.VideoCapture(0)

源码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值