检测点是否在两条平行线段之间_六下数学第七章 相交线与平行线学后感

2ce19651df9d2efa6e7388bb28cd92bd.png

我是一名小学生,

现在已升入五年级了。

此公众号文章皆为我原创的习作。

请点击上方清月澹水木关注我哦。

183be51e50f0437c72fbc7b68e640e83.png

本章讲述了相交线,角的关系,平行线,平行线的条件,平行线的性质以及作等角。其中,有一个很重要的条件:它们是否都在同一平面内。

下面分段叙述。

一、相交线

“相交线”是指在同一平面内,在一点相遇的一组直线(10-5)。

74d74ff68266ed6ef52c549c736bfcd8.png (10-5) 相交线中,比较特殊的是垂直线和垂线段,它们是一个道理,不过垂直线都是直线,而垂线段中至少有一条线段(10-6)。 747dde867cde23d2a156de1e065a1bce.png ( 10-6 ) 两线垂直——不管是垂直线还是垂线段,则称一条直线(线段)垂直于另一条直线(线段),它们的交点叫做垂足,它们交成直角(10-7)。 a2d6c3f383dc79314e64e070f7a575ff.png (10-7) 知道了什么是垂直线和垂线段,就要到生活中去应用。这里应用的是后者。有一个村子,还没有修水管。它的旁边有一条河,要用水管把河水引到村里。为了节省材料和时间,工程师打算找出河与村子间最短的距离。于是,他画出了下图(10-8)。 d2cdc47ecc530d6689bd60bc4a04bfe3.png (10-8) 最终,他找到了最短的距离,水管很快修好了。而这最短的距离,就是村子到小河所作的垂线段。证明过程如下。
“村子”可以近似的看成一个点,A;“小河”可以近似的看成一条直线,BC(10-9)。 4a4f2290a5dc1cb0df7f01641c7bb7df.png (10-9) 作AD垂直于BC,连接AB。因为∠ADB=900。勾股定理a2+b2=c2, 所以AD2+BD2=AB2。因为AD2与BD2的和是AB2,所以AB2>AD2,所以AB>AD。这里,如果AD不是最短的,且AB是最短的,则AB。而已经证明了AB>AD :大的小于小的,这是不可能的。其次,也可证明AB ≠AD 。 同理,AD 小于A 与BC 连线中的任意一条。所以,它最短。 从直线外一点到该直线的连线中,垂线段最短。点到直线所作的垂线段是它们间的距离。 那么,从A 到BC 所作的垂线段只有AD 一条吗?是的。因为,如果从A 向别的方向画线段,线段的一端要么落在BC 之外,要么落在D 的两侧,而它们不可能与BC 垂直。 从一直线外一点到该直线,能且只能作一条垂直线(垂线段)。不管在不在同一平面内。 如果A 在BC 上,则有以下两种情况。 第一种:只能作一条垂直线(垂线段)。在同一平面内是这样的。因为,如果要过A 作多于一条直线(线段)它们,除了与BC 垂直的那条,一定落在所作的垂直线的两侧,而它们不可能再与BC 垂直。 在同一平面内,过一直线上一点到该直线只能作一条垂直线(垂线段)。 第二种:可以作无数条垂直线(垂线段)。不在同一平面内是这样的。因为,交BC于A的平面有无数个,每个面上都作一条与BC垂直的直线(线段), 无数个面就能作无数条。 不在同一平面内,过直线上一点可作无数条与该直线垂直的直线(线段)。这些垂直线(垂线段)一定围成一个圆。

二、角的关系

如图(10-10),a,b互相垂直,c与它们的垂足相交,∠1=∠2,因为它们都等于90°。

ced5711346857f969290429cf62532d6.png   ( 10-10 )   有∠1与∠2这样的位置关系的角,叫作对顶角。图中的对顶角还有:∠3、∠4、∠5、∠6、∠7、∠8。 对顶角相等。 因为,以∠5、∠8为例,∠5+∠6+∠4=180°, ∠8+∠4+∠6=180°;把“∠6+∠4”看成一个整体;180°=180°; 等量加等量,其和还相等;∠5+“等量”=∠8+“等量”; ∠5与∠8是等量,它们相等。 两角相加,其和等于一直角,则称此两角互为余角。 图中互为余角的角有:∠5、∠6,∠5、∠7,∠6、∠8,∠7、∠8。 两角相加,其和等于二直角(一平角), 则称此两角互为补角。 图中互为补角的角有:∠1、∠4,∠1、∠2,∠1、∠3,∠2、∠4,∠2、∠3,∠3、∠4。 因为“等量加等量,其和还相等”, 所以“等角或同角的余角为等角或同角,等角或同角的补角为等角或同角”。

三、平行线

“平行线”是指在同一平面内永不相交的一组直线(11-1)。

b22d17c47fb0e4ff9340eeb051f7954d.png  (11-1) (11-1)中,a与b互相平行。   不管在不在同一平面内,与一直线平行的直线有无数条。因为,一个面上有无数条直线,而一个空间中有无数个面。无数个面上有无数条直线。即使一平面(空间)中一定有一条直线是该直线本身,也是这样,因为无数-1=无数。如果过一点,则有一条。而且,平行于该直线的直线也互相平行。 知道了什么是平行线,就要到生活中去应用。比如:如何做一把直尺(直尺对边平行)? 那么如何确定二直线是否平行?或者说,二直线平行的条件是什么?

四、平行线的条件

二直线平行的条件与此二直线上的角有关。 08592dbc756bea68458cec7071f8715f.png (11-2) 如图(11-2),∠1与∠2是同位角,∠3与∠2是内错角,∠3与∠4是同旁内角。 同位角相等,二直线平行;内错角相等,二直线平行;同旁内角互补(互为补角,以后皆称为互补),二直线平行。 首先看“内错角”。 99b462851ab578b13090198ab1ba9fa7.png (11-3) 如图(11-3),∠AEF=∠EFD。由此可知,AB平行于CD(“平行”的符号是“∥”,以后用符号表示)。因为,如果AB不平行于CD,则它们相交。设它们相交与G, 连接BG、DG。此时, ∆EGF中,外角AEF等于内对角EFD:这是不可能的。所以,AB∥CD。 这里有一个定义:三角的外角大于任何一个内对角。 然后看“同位角”。 cb8d9ed177701e91b39effcb9b2b39a1.png (11-4) 如图(11-4),∠2=∠3,a∥b,因为“内错角相等,二直线平行”。因为“对顶角相等”,∠1与∠2是对顶角,它们相等。而∠3也等于∠2。因为“等于同量的量彼此相等”,所以∠1=∠3。它们是二平行线上的同位角。 最后看“同旁内角”。 a75e4e8e6c4630515a63ef3da174db4b.png (11-5) 如图(11-5), ∠3=∠1,a∥b, 因为“同位角相等,二直线平行”。显而易见,∠3+∠2=180°,将“∠3=∠1”代到这个式子里。 于是,∠1+∠2=180°。它们是二平行线上的同旁内角。 利用平行线的条件,可以作平行线(11-6)。 8ee1e50285cd5732f19caa2bef4a6325.png

(11-6)

五、平行线的性质

如果二直线平行,它们的同位角、内错角和同旁内角分别有什么关系?

知道“1+1=2”,就可以知道“2-1=1”。 知道同位角、内错角和同旁内角分别有什么关系时二直线平行,就可以知道二直线平行时同位角、内错角和同旁内角分别有什么关系。

就是说,平行线性质的定义就是把平行线条件的定义反过来说。

二直线平行,同位角相等;二直线平行,内错角相等;二直线平行,同旁内角互补。

在“平行线条件的定义”中,“同位角相等”、“内错角相等”、“同旁内角互补”是条件;而在“平行线性质的定义”中,“直线平行”是条件。

六、作等角

如果要在一长方形木板上切下一个平行四边形,使它的其中一组对边在长方形木板的一组对边上,就需要作等角(11-7)。

800c94c75839e0ff50a62136f657d26b.png ( 11-7 ) 这里插一段话。 根据定义“一圆上的一弧比该弧所对的角等于该圆的圆周比周角”, 可以推测出以下三条定义:等弧对等角、等弧对等弦、等角对等弦。作等角时,要用到这三条定义。 1ee2ee587bedaef7870bebe3d98cbd3b.png (11-8)  如图(11-8), 设要以b为顶点作与∠1相等的角。以点a为圆心,以线段a为距离画弧。因为“等弧对等弦”,“等角对等弦”, 连接d、c,并以d为圆心,以dc为距离画弧。以b为圆心,以ac为距离画弧;再以e为圆心,以dc为距离画弧。在两弧相交的位置上一点就是平行四边形的顶点。连接bf,∠1=∠2,abfc是要作的平行四边形。 拓展 如图(11-9), 要将十字形切两刀,使它可以拼成一个正方形。 19fbec10b4e8aa4e64accfdd89162687.png ( 11-9 ) a和b就是所切的两刀。 因为∠1=∠2,直角相等,十字形中的小正方形边长相等,所以 ∆A= ∆B。因为小正方形边长相等,小正方形边长的一半相等,直角相等,所以 ∆C= ∆B。同理, ∆D = ∆C。于是,c=d=f=e。所以,c+d=e+f。而c+d=b,e+f=a,所以a=b。每切一下可得两条边,所以,切两下就行。 以上是本章的主要内容。 本章中需要注意的是研究对象是否在同一平面内。就是说,要先选定研究对象的取值范围,再研究。 cfb0ebbdf75d3cac2571823d25f5dca9.png

0d51e2ec6e1ca9665fb5eae459cd147f.png

f352fa9c6ef20c2d7a693a03bb9ab33f.png

95f44e7a3a701aa5d6cacd2dc17cfdd5.png

9416994990b432214da58dad4adba96d.png

f54122d15812c39c27aca11cfb43910d.png

end

da530027a7947b340e424093c937d69b.png

 更多精彩文章 

◀《启示》观后感

◀《武士道》读后感

◀ 疫情下的我们

◀ 雪絮儿

◀ 我的乐园

◀ 短篇小说——白眼狼

◀ 我家乡的海

◀ 照片里的温暖 | 四年级的习作

◀ 兵者,诡道也——《资治通鉴》读后感|四年级的作文·爱雅

◀《药》读后感|四年级的作文·爱雅

◀ 雨中黄山|四年级的作文·爱雅

◀ Red Leaves

◀ 清明·踏青|三年级的小学生·爱雅

◀ SGS宇宙之战---第一章|小学三年级完成的第一部小说

◀《六·上 数学第一章 丰富的图形世界》学后感

◀《六·上 数学第二章 有理数及其运算》学后感

◀《六·上 数学第三章 整式及其加减》学后感

◀ 0乘0有意义吗,0除以0呢?

◀《狂人日记》读后感

◀《三体》读后感|四年级的小学生·爱雅

点击在看

送你小花花

927c33d4373d67d4d39b51e5ebc02c64.gif

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在笛卡尔坐标系中,要判断线段和曲线是否相交,需要使用一种叫做碰撞检测的技术,这种技术可以用C语言来实现,代码如下: int detect_collision(float x1, float y1, float x2, float y2, float curve_x[], float curve_y[]) { // 初始化最小及最大的x和y坐标 float min_x = min(x1, x2); float max_x = max(x1, x2); float min_y = min(y1, y2); float max_y = max(y1, y2); // 计算线段和曲线之间的最小距离 float min_distance = FLT_MAX; for (int i = 0; i < curve_x.length; i++) { // 判断点是否线段的范围内 if (curve_x[i] >= min_x && curve_x[i] <= max_x && curve_y[i] >= min_y && curve_y[i] <= max_y) { // 计算点到线段的距离 float distance = pow(curve_x[i] - x1, 2) + pow(curve_y[i] - y1, 2); min_distance = min(min_distance, distance); } } // 如果最短距离小于等于零,则表示有交点 if (min_distance <= 0) return 1; else return 0; } ### 回答2: 在笛卡尔坐标系中,判断线段和曲线是否相交是一个常见的几何问题。下面是使用C代码实现的简单方法。 首先,我们需要定义表示线段和曲线的数据结构。线段可以由两个点定义,每个点有x和y坐标。曲线可以用多个控制点定义,每个控制点也有x和y坐标。下面是相应的结构定义: ```c typedef struct { double x, y; } Point; typedef struct { Point start, end; } LineSegment; typedef struct { Point controlPoints[4]; // 拟合曲线的控制点,使用三次贝塞尔曲线 } Curve; ``` 接下来,我们可以实现一个函数来判断线段和曲线是否相交。基本思路是将曲线拆分成多段线段,并逐一判断线是否线相交。 ```c int checkIntersection(LineSegment segment, Curve curve) { int i; double t; Point p0, p1, p2, p3; for (i = 0; i < 3; i++) { p0 = curve.controlPoints[i]; p1 = curve.controlPoints[i + 1]; // 逐一判断线段与曲线是否相交 for (t = 0.0; t <= 1.0; t += 0.01) { p2 = calculateBezierPoint(t, p0, p1); // 计算曲线段上的点 p3 = calculateBezierPoint(t + 0.01, p0, p1); if (doSegmentsIntersect(segment.start, segment.end, p2, p3)) { return 1; // 相交 } } } return 0; // 不相交 } ``` 在这个函数中,我们使用`calculateBezierPoint`函数计算曲线段上的点,`doSegmentsIntersect`函数判断两个线是否相交。这两个函数需要根据实际情况进行实现,可以参考相关几何算法的实现。 最后,我们可以调用这个函数来判断给定的线段和曲线是否相交。 ```c int main() { LineSegment segment; Curve curve; // 设置线段和曲线的坐标值 int isIntersect = checkIntersection(segment, curve); if (isIntersect) { printf("线段和曲线相交\n"); } else { printf("线段和曲线相交\n"); } return 0; } ``` 这是一个基本的方法,实际应用中可能需要更高效和精确的算法来处理更复杂的情况。 ### 回答3: 要判断线段和曲线是否相交,首先需要理解笛卡尔坐标系中的线段和曲线的表示方式。线段通常由两个点所定义,我们可以使用两个点的坐标来表示一个线段。曲线一般使用参数方程进行表示,其中包含一个或多个参数,例如二次曲线可以由参数方程 x = f(t) 和 y = g(t) 来表示。接下来,我们可以通过以下的C代码演示如何判断线段和曲线是否相交: ```c #include <stdio.h> // 线段结构体 typedef struct { double x1, y1; // 第一个点的坐标 double x2, y2; // 第二个点的坐标 } Line; // 曲线的参数方程 double f(double t) { // 定义曲线的参数方程,例如二次曲线 x = t^2, y = t return t * t; } double g(double t) { return t; } // 判断线段和曲线是否相交 int isIntersect(Line line, double t1, double t2) { // 计算曲线上的点坐标 double x = f(t1); double y = g(t1); // 判断点是否线段上 if (x >= line.x1 && x <= line.x2 && y >= line.y1 && y <= line.y2) { return 1; // 相交 } return 0; // 不相交 } int main() { Line line = {1, 1, 3, 3}; // 定义线段 double t1 = 0; // 曲线参数范围的起点 double t2 = 2; // 曲线参数范围的终点 if (isIntersect(line, t1, t2)) { printf("线段与曲线相交\n"); } else { printf("线段与曲线相交\n"); } return 0; } ``` 在上面的代码中,我们定义了一个Line结构体来表示线段,其中包含了两个点的坐标。然后我们定义了曲线的参数方程f(t)和g(t),接着通过isIntersect函数来判断曲线上的点是否在给定的线段上。最后,在main函数中我们可以通过调整t1和t2的取值范围来判断线段和曲线是否相交,并输出相应的结果。 需要注意的是,这是一个简化的实现,并未考虑线段和曲线在笛卡尔坐标系中的具体位置关系。在实际应用中,我们可能需要考虑更复杂的情况并进行相应的算法设计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值