我是一名小学生,
现在已升入五年级了。
此公众号文章皆为我原创的习作。
请点击上方清月澹水木关注我哦。

本章讲述了相交线,角的关系,平行线,平行线的条件,平行线的性质以及作等角。其中,有一个很重要的条件:它们是否都在同一平面内。
下面分段叙述。
一、相交线
“相交线”是指在同一平面内,在一点相遇的一组直线(10-5)。

(10-5)
相交线中,比较特殊的是垂直线和垂线段,它们是一个道理,不过垂直线都是直线,而垂线段中至少有一条线段(10-6)。

(
10-6
)
两线垂直——不管是垂直线还是垂线段,则称一条直线(线段)垂直于另一条直线(线段),它们的交点叫做垂足,它们交成直角(10-7)。

(10-7)
知道了什么是垂直线和垂线段,就要到生活中去应用。这里应用的是后者。有一个村子,还没有修水管。它的旁边有一条河,要用水管把河水引到村里。为了节省材料和时间,工程师打算找出河与村子间最短的距离。于是,他画出了下图(10-8)。

(10-8)
最终,他找到了最短的距离,水管很快修好了。而这最短的距离,就是村子到小河所作的垂线段。证明过程如下。
“村子”可以近似的看成一个点,A;“小河”可以近似的看成一条直线,BC(10-9)。

(10-9)
作AD垂直于BC,连接AB。因为∠ADB=90
0。勾股定理a
2+b
2=c
2, 所以AD
2+BD
2=AB
2。因为AD
2与BD
2的和是AB
2,所以AB
2>AD
2,所以AB>AD。这里,如果AD不是最短的,且AB是最短的,则AB。而已经证明了AB>AD
:大的小于小的,这是不可能的。其次,也可证明AB
≠AD
。
同理,AD
小于A
与BC
连线中的任意一条。所以,它最短。
从直线外一点到该直线的连线中,垂线段最短。点到直线所作的垂线段是它们间的距离。
那么,从A
到BC
所作的垂线段只有AD
一条吗?是的。因为,如果从A
向别的方向画线段,线段的一端要么落在BC
之外,要么落在D
的两侧,而它们不可能与BC
垂直。
从一直线外一点到该直线,能且只能作一条垂直线(垂线段)。不管在不在同一平面内。
如果A
在BC
上,则有以下两种情况。
第一种:只能作一条垂直线(垂线段)。在同一平面内是这样的。因为,如果要过A
作多于一条直线(线段)它们,除了与BC
垂直的那条,一定落在所作的垂直线的两侧,而它们不可能再与BC
垂直。
在同一平面内,过一直线上一点到该直线只能作一条垂直线(垂线段)。
第二种:可以作无数条垂直线(垂线段)。不在同一平面内是这样的。因为,交BC于A的平面有无数个,每个面上都作一条与BC垂直的直线(线段), 无数个面就能作无数条。
不在同一平面内,过直线上一点可作无数条与该直线垂直的直线(线段)。这些垂直线(垂线段)一定围成一个圆。
二、角的关系
如图(10-10),a,b互相垂直,c与它们的垂足相交,∠1=∠2,因为它们都等于90°。

(
10-10
)
有∠1与∠2这样的位置关系的角,叫作对顶角。图中的对顶角还有:∠3、∠4、∠5、∠6、∠7、∠8。
对顶角相等。
因为,以∠5、∠8为例,∠5+∠6+∠4=180°, ∠8+∠4+∠6=180°;把“∠6+∠4”看成一个整体;180°=180°; 等量加等量,其和还相等;∠5+“等量”=∠8+“等量”; ∠5与∠8是等量,它们相等。
两角相加,其和等于一直角,则称此两角互为余角。
图中互为余角的角有:∠5、∠6,∠5、∠7,∠6、∠8,∠7、∠8。
两角相加,其和等于二直角(一平角), 则称此两角互为补角。
图中互为补角的角有:∠1、∠4,∠1、∠2,∠1、∠3,∠2、∠4,∠2、∠3,∠3、∠4。
因为“等量加等量,其和还相等”, 所以“等角或同角的余角为等角或同角,等角或同角的补角为等角或同角”。
三、平行线
“平行线”是指在同一平面内永不相交的一组直线(11-1)。

(11-1)
(11-1)中,a与b互相平行。
不管在不在同一平面内,与一直线平行的直线有无数条。因为,一个面上有无数条直线,而一个空间中有无数个面。无数个面上有无数条直线。即使一平面(空间)中一定有一条直线是该直线本身,也是这样,因为无数-1=无数。如果过一点,则有一条。而且,平行于该直线的直线也互相平行。
知道了什么是平行线,就要到生活中去应用。比如:如何做一把直尺(直尺对边平行)?
那么如何确定二直线是否平行?或者说,二直线平行的条件是什么?
四、平行线的条件
二直线平行的条件与此二直线上的角有关。

(11-2)
如图(11-2),∠1与∠2是同位角,∠3与∠2是内错角,∠3与∠4是同旁内角。
同位角相等,二直线平行;内错角相等,二直线平行;同旁内角互补(互为补角,以后皆称为互补),二直线平行。
首先看“内错角”。

(11-3)
如图(11-3),∠AEF=∠EFD。由此可知,AB平行于CD(“平行”的符号是“∥”,以后用符号表示)。因为,如果AB不平行于CD,则它们相交。设它们相交与G, 连接BG、DG。此时, ∆EGF中,外角AEF等于内对角EFD:这是不可能的。所以,AB∥CD。
这里有一个定义:三角的外角大于任何一个内对角。
然后看“同位角”。

(11-4)
如图(11-4),∠2=∠3,a∥b,因为“内错角相等,二直线平行”。因为“对顶角相等”,∠1与∠2是对顶角,它们相等。而∠3也等于∠2。因为“等于同量的量彼此相等”,所以∠1=∠3。它们是二平行线上的同位角。
最后看“同旁内角”。

(11-5)
如图(11-5), ∠3=∠1,a∥b, 因为“同位角相等,二直线平行”。显而易见,∠3+∠2=180°,将“∠3=∠1”代到这个式子里。 于是,∠1+∠2=180°。它们是二平行线上的同旁内角。
利用平行线的条件,可以作平行线(11-6)。
(11-6)
五、平行线的性质
如果二直线平行,它们的同位角、内错角和同旁内角分别有什么关系?
知道“1+1=2”,就可以知道“2-1=1”。 知道同位角、内错角和同旁内角分别有什么关系时二直线平行,就可以知道二直线平行时同位角、内错角和同旁内角分别有什么关系。
就是说,平行线性质的定义就是把平行线条件的定义反过来说。
二直线平行,同位角相等;二直线平行,内错角相等;二直线平行,同旁内角互补。
在“平行线条件的定义”中,“同位角相等”、“内错角相等”、“同旁内角互补”是条件;而在“平行线性质的定义”中,“直线平行”是条件。
六、作等角
如果要在一长方形木板上切下一个平行四边形,使它的其中一组对边在长方形木板的一组对边上,就需要作等角(11-7)。

(
11-7
)
这里插一段话。
根据定义“一圆上的一弧比该弧所对的角等于该圆的圆周比周角”, 可以推测出以下三条定义:等弧对等角、等弧对等弦、等角对等弦。作等角时,要用到这三条定义。

(11-8)
如图(11-8), 设要以b为顶点作与∠1相等的角。以点a为圆心,以线段a为距离画弧。因为“等弧对等弦”,“等角对等弦”, 连接d、c,并以d为圆心,以dc为距离画弧。以b为圆心,以ac为距离画弧;再以e为圆心,以dc为距离画弧。在两弧相交的位置上一点就是平行四边形的顶点。连接bf,∠1=∠2,abfc是要作的平行四边形。
拓展
如图(11-9), 要将十字形切两刀,使它可以拼成一个正方形。

(
11-9
)
a和b就是所切的两刀。
因为∠1=∠2,直角相等,十字形中的小正方形边长相等,所以 ∆A= ∆B。因为小正方形边长相等,小正方形边长的一半相等,直角相等,所以 ∆C= ∆B。同理, ∆D = ∆C。于是,c=d=f=e。所以,c+d=e+f。而c+d=b,e+f=a,所以a=b。每切一下可得两条边,所以,切两下就行。
以上是本章的主要内容。
本章中需要注意的是研究对象是否在同一平面内。就是说,要先选定研究对象的取值范围,再研究。





end
更多精彩文章
◀《启示》观后感
◀《武士道》读后感
◀ 疫情下的我们
◀ 雪絮儿
◀ 我的乐园
◀ 短篇小说——白眼狼
◀ 我家乡的海
◀ 照片里的温暖 | 四年级的习作
◀ 兵者,诡道也——《资治通鉴》读后感|四年级的作文·爱雅
◀《药》读后感|四年级的作文·爱雅
◀ 雨中黄山|四年级的作文·爱雅
◀ Red Leaves
◀ 清明·踏青|三年级的小学生·爱雅
◀ SGS宇宙之战---第一章|小学三年级完成的第一部小说
◀《六·上 数学第一章 丰富的图形世界》学后感
◀《六·上 数学第二章 有理数及其运算》学后感
◀《六·上 数学第三章 整式及其加减》学后感
◀ 0乘0有意义吗,0除以0呢?
◀《狂人日记》读后感
◀《三体》读后感|四年级的小学生·爱雅
点击在看
送你小花花
