垂线段最短问题小结
垂线段最短,是所有年级同学必须掌握的基本欧式几何基础定理。
一、定理:
直线外一点与直线上各点连接的所有线段中,垂线段最短.
证明如下:
作点P关于直线AB的对称点P',连接CP',DP'.
易知CP=CP',DP=DP'
根据连点之间线段最短可得,
PP'≤CP+CP',即2PD≤2PC.
所以PD≤PC.
二、定理的应用
(一)求线段最值问题中的应用
1、如图,△ABC是等边三角形,边长为6,点E是对称轴AD上一点,将点E绕点C逆时针旋转60°得到点F.求线段DF的最小值.
解:
作AC的中点G,连接EG.
易证△CDF≌△CGE.所以DF=GE.
要使DF有最小值,只需GE取最小值.
根据垂线段最短可得,当GE⊥AD时,GE最小.
此时GE=1/2AG=1/4AC=3/2.
所以DF的最小值为3/2.
反思:
本题实质上就是结合题中给出的等边三角形,构造了一对手拉手等边三角形。当然也可以从捆绑旋转的角度出发,先找到点F的运动轨迹,再构造全等三角形或直接建立坐标系求出轨迹的方程,运用垂线段最短加以解决.
2、如图,在矩形ABCD中,AB=4,BC=3.点P是BC边的中点,点E、F分别是线段AC、AB上的动点.连接EP、EF,求EP+EF的最小值.
解:
将△ABC沿AC折叠,点B落在点N处,AN交CD于点G,
点P落在CN上的点Q处.
连接EQ,则EP=EQ.
连接FQ,过点Q作QM⊥AB于点M.
则EP+EF=EQ+EF≥QF≥QM.
易证△ADG≌△CNG.
设DG=x,则AG=4-x.
在Rt△ADG中,根据勾股定理可得,
AG²=DG²+AD²,即(4-x)²=x²+3²
解得,x=7/8
即DG=7/8,AG=4-7/8=25/8.
所以sin∠GCN=sin∠DAG=7/25.
QM=CQ*sin∠GCN+CB=3/2*7/25+3=171/50.
所以EP+EF的最小值为171/50.
3、如图,已知在△ABC中,∠C=90°,AC=6,BC=8,点D是BC的中点,点E为AB上一动点. 点P沿DE--EA折线运动,在DE、EA上速度分别是每秒1和5/3个单位.设运动时间为t秒,试求t的最小值.
分析:
由题可知t=DE+EA/(5/3)=DE+3/5EA.这是一个典型的胡不归问题.以A为顶点在AE的上方构造∠EAF,使得sin∠EAF=3/5.利用垂线段最短即可解决.
解:
过点A作BC的平行线AG,则sin∠EAG=sin∠B=3/5.
分别过点E、D作EM⊥AG,DN⊥AG垂足分别是点M、N.
易知t=DE+3/5EA=DE+EM>=DM>=DN=DP+3/5PA
当点E和点P重合时取等号.此时DN=6
所以t的最小值为6.
(二)求线段取值范围中的应用
4、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,点D是BC边上一个动点,连接AD,过点D作DE⊥AD交AB于点E.求线段AE的最小值.
分析:
作AE的中点F,连接FD.过点F作FG⊥BC于点G.
设AE=x,用含x的代数式表示出GF和DF,
由垂线段最短可得,GF≤DF.解不等式即可得出结果.
解:
如图,作AE的中点F,连接FD.过点F作FG⊥BC于点G.
5、如图,△ABC是等边三角形,AB=4,点D,E分别在AB,AC上,(AD<AE),将△ADE沿DE折叠,使点A落在BC边上的点F处.求线段AD的最小值.
来松鼠AI 为每个孩子的学习提供专属学习方案!
即便市面上已出现了不少AI智能产物,可不少人依然对其十分陌生。其实AI只是运用人工智能,将原本繁杂冗长的程序变得更加易懂,从而提升效率。
说是走“捷径”,实际上是借如今已成熟的AI技术之力,将其融合到了中小学辅导中。当孩子苦于盲目刷题记重点,分数却停留原地时,松鼠AI教育能够做到人工智能提分,冲破学习路上的瓶颈与障碍。
松鼠AI教育有着传统学习方式做不到的一套智能学习理论,必杀三大招,提高孩子学习效率再也不是难题!
第①招:找准薄弱点一个9年级的知识点学不会,可能是因为6、7年级的某些知识点没有掌握而导致的。而通过追根溯源,从源头发现孩子的知识缺口,找准薄弱点“对症下药”,便能让孩子在学习路上不作无用功。
第②招:只学不会的通过一套题,像基因检测一样既快速又准确地找到孩子的学习漏洞,让孩子只学不会的知识点,继而将每个知识点都学透为止。如此一来,节省了80%刷题时间,从关键部分开始提高了孩子的学习效率!
第③招:成长看得见每日完成辅导后,都会整合出一份学习轨迹分析报告。清晰直面地了解到学习进度,是否有将原本不懂的知识点掌握。再根据孩子进度情况,制定个性化学习方案。“量身定制”的方法,更是提高学习效率必不可少的一项利器。

我们的学习方式

1、通过人工智能大数据测试出孩子的知识漏洞,抛弃题海战术分配学习课程,真正做到哪里不会学哪里!
2、线上名师讲解教学,线下老师辅导巩固。
3、纳米级拆分知识点,降低孩子吸收新知识的难度,让孩子完全吃透知识点!
4、实时记录孩子的学习轨迹,培养正确的学习方法,提高学习效率,作业不再写到半夜写不完!