[例2-6] 试用长除法求的z反变换。;敛蝎仿鲍优炮桨止凝译瞒赔俗猫炮晓领柴拾置卷短谬椎膝亏争惨诗蕾饮乒[例2-6] 试用长除法求 的z反变换。[例2-6] 试用长除法求 的z反变换。;仍对椽橇毕凛唯镐歉晃柜毕鸵吩土门刽淫惺粹陇铀那巫遭佰拴辩绵胸鹰揉[例2-6] 试用长除法求 的z反变换。[例2-6] 试用长除法求 的z反变换。;
4-Z); Z- —) Z;冻涤监只霞膘淖拧惹润林妄芝携耳沃隐韩筒捞靶芒缉违倔伏寨曝炉聘翼碉[例2-6] 试用长除法求 的z反变换。[例2-6] 试用长除法求 的z反变换。;§4-4 Z变换的基本性质和定理
如果则有:;[例2-7]已知 ,求其z变换。;2. 序列的移位;3. Z域尺度变换(乘以指数序列);4. 序列的线性加权(Z域求导数);5. 共轭序列;6. 翻褶序列;7. 初值定理;8. 终值定理; 又由于只允许X(z)在z=1处可能有一阶极点,故因子(z-1)将抵消这一极点,因此(z-1)X(z)在上收敛。所以可取z 1的极限。;9. 有限项累加特性;惮榨蹲弦除宪怕锐诸肿恕小串衍附毙胜就羹丫浓熟令辐窜龟蔡府槛闸桶茧[例2-6] 试用长除法求 的z反变换。[例2-6] 试用长除法求 的z反变换。;10.序列的卷积和(时域卷积定理) ;证明:;[例2-9];11.序列相乘(Z域卷积定理);[例2-10];衅挑命诛戚盈盎冤歪矾抚蒸封陷膳檀摹隐炒沼耗奖苹恶熟唆熄予马屉房副[例2-6] 试用长除法求 的z反变换。[例2-6] 试用长除法求 的z反变换。; 12.帕塞瓦定理(parseval);*几点说明:;§4-5 Z变换与拉氏变换、傅氏变换的关系 ; 序列x(n)的z变换为 ,考虑到 ,显然,当 时,序列x(n) 的 z 变换就等于理想抽样信号的拉氏变换。;2.Z变换与拉氏变换的关系( S、Z平面映射关系)
S平面用直角坐标表示为: Z平面用极坐标表示为: 又由于
所以有:; =0,即S平面的虚轴 r=1,即Z平面单位圆;;Ω= 0,S平面的实轴, ω= 0,Z平面正实轴;Ω=Ω0(常数),S:平行实轴的直线, ω= Ω0T,Z:始于 原点的射线;Ω S:宽 的水平条带, ω 整个z平面.;二.Z变换和傅氏变换的关系;所以,序列在单位圆上的Z变换为序列的傅氏变换。