mac:jupyter notebook使用lightgbm

最近习惯了用jupyter notebook做比赛,但是使用lightgbm这种模块的时候,报错说“找不到相关模块”,于是各种谷歌百度,最终解决了这个问题,下面和大家分享一下,也给自己做一下笔记。

1.lightgbm的安装教程在前一篇的博客有写,这里不在赘述。

 2.打开你的jupyter notebook,输入一下代码:

import lightgbm as lgb
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris=datasets.load_iris()
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.3)
import numpy as np
train_data=lgb.Dataset(X_train,label=y_train)
validation_data=lgb.Dataset(X_test,label=y_test)
params={
    'learning_rate':0.1,
    'lambda_l1':0.1,
    'lambda_l2':0.2,
    'max_depth':4,
    'objective':'multiclass',
    'num_class':3,  #lightgbm.basic.LightGBMError: b‘Number of classes should be specified and greater than 1 for multiclass training‘
}
clf=lgb.train(params,train_data,valid_sets=[validation_data])
from sklearn.metrics import roc_auc_score,accuracy_score
y_pred=clf.predict(X_test)
y_pred=[list(x).index(max(x)) for x in y_pred]
print(y_pred)
print(accuracy_score(y_test,y_pred))

如果系统报错:找不到相关模块。那就是你没有配置好你的lightgbm

3.找到你在安装好的 LightGBM 文件夹,拷贝里面的 lib_lightgbm.so 文件到 LightGBM/python-package/lightgbm 目录下。最后将 LightGBM/python-package/lightgbm 文件夹拷贝到你需要用到的 python 文件夹下。如果你不知道怎么查看python路径,请打开terminal,输入一下代码:

input : python  --->import sys  ----> print sys.path

下面的输出就是你的python文件路径。

4.像我的文件路径类似这样:

/Users/aligege/anaconda3/lib/python3.6/site-packages

5.这个时候打开您的文件夹,也可以使用快捷键command+shift+g直接进入此文件夹。找不到别心急,别忘了command+shift+.显示隐藏文件。

6.这个时候重启一下jupyter notebook就ojbk啦。

参考:一位童鞋的分享

要在Jupyter Notebook中运行LightGBM,您需要按照以下步骤进行设置和操作: 1. 安装LightGBM库:首先,确保您已经安装了LightGBM库。您可以使用以下命令在终端或命令提示符中安装LightGBM: ``` pip install lightgbm ``` 2. 导入所需的库:在Jupyter Notebook中,您需要导入LightGBM库以及其他可能需要使用的库。通常,您还需要导入numpy和pandas库来处理数据。您可以使用以下代码导入这些库: ```python import lightgbm as lgb import numpy as np import pandas as pd ``` 3. 准备数据:接下来,您需要准备您的数据集。您可以使用pandas库加载数据集,并将其转换为LightGBM所需的数据格式。例如,您可以使用以下代码加载一个CSV文件: ```python data = pd.read_csv('your_dataset.csv') ``` 4. 划分训练集和测试集:在训练模型之前,通常需要将数据集划分为训练集和测试集。您可以使用sklearn库中的train_test_split函数来实现。以下是一个示例代码: ```python from sklearn.model_selection import train_test_split X = data.drop('target', axis=1) # 特征列 y = data['target'] # 目标列 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 5. 定义和训练模型:接下来,您需要定义LightGBM模型并训练它。您可以使用lgb.LGBMClassifier或lgb.LGBMRegressor类来定义分类或回归模型。以下是一个示例代码: ```python model = lgb.LGBMClassifier() model.fit(X_train, y_train) ``` 6. 进行预测:在模型训练完成后,您可以使用训练好的模型进行预测。以下是一个示例代码: ```python y_pred = model.predict(X_test) ``` 这些是在Jupyter Notebook中运行LightGBM的基本步骤。您可以根据您的具体需求进行调整和扩展。如果您有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值