两个向量叉乘表示什么意思_为什么向量积(叉乘)的这两个概念是这样的?

本文详细解释了向量叉积的概念,指出叉积结果向量与原向量垂直,并通过右手法则确定其方向。还介绍了向量的数乘、点积与叉积的区别,强调叉积在三维空间中的应用及其与垂直关系的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

到了讨论向量叉积时,对右手法则咋用还不清楚,确实有点着急。

向量a与b叉积,得到的新向量c=axb,这个c的方向是与a,b同时垂直的。与a,b同时垂直是啥意思?就是c与a,b所在的平面垂直。比如,你在桌上铺一张纸,上面画了a,b(两者从同一点出发,指向不同方向),c与a,b垂直,在直观上就是与这张纸面垂直了(因为a,b都在这个平铺的纸面上)。但与纸面垂直有两个相反的方向,一个由纸面往上(假设为正面),一个由纸面往下(假设为反面)。那么,c=axb时,究竟c往上还是往下?这个就可以用右手法则来判断了。咋做?

你伸开手掌✋,然后,小拇指外侧(手掌外侧)按到a上,方向与a同向。拇指这时是朝上的。如果在手掌这样放的时候,b在手掌掌心一侧(意味着这时a若逆时针转动到b,其间的夹角<180°),这时,拇指的方向就是c的方向(朝上);如果b这时处在掌背一侧,那么,你需要把手掌倒放过来,拇指朝下,食指(和其它三指一起)还是与a同向,你可以看到,b又处于掌心一侧了。但这是拇指是向下的,这就是c的方向。

总结一下右手法则的用法:

1.a与b叉积,新的向量c总是与a,b所在的平面垂直的。对于这个平面,以及与之垂直的线(c在这根线里)所在的位置,没有右手法则也可以确定。

2.我们知道a与b叉积得到的向量c在a,b所在的平面的垂直线里,但是,它究竟是指向上的,还是指向下的,单单看这个平面,我们是不知道的。怎么定c的朝向呢?这就要看a与b的相对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值