到了讨论向量叉积时,对右手法则咋用还不清楚,确实有点着急。
向量a与b叉积,得到的新向量c=axb,这个c的方向是与a,b同时垂直的。与a,b同时垂直是啥意思?就是c与a,b所在的平面垂直。比如,你在桌上铺一张纸,上面画了a,b(两者从同一点出发,指向不同方向),c与a,b垂直,在直观上就是与这张纸面垂直了(因为a,b都在这个平铺的纸面上)。但与纸面垂直有两个相反的方向,一个由纸面往上(假设为正面),一个由纸面往下(假设为反面)。那么,c=axb时,究竟c往上还是往下?这个就可以用右手法则来判断了。咋做?
你伸开手掌✋,然后,小拇指外侧(手掌外侧)按到a上,方向与a同向。拇指这时是朝上的。如果在手掌这样放的时候,b在手掌掌心一侧(意味着这时a若逆时针转动到b,其间的夹角<180°),这时,拇指的方向就是c的方向(朝上);如果b这时处在掌背一侧,那么,你需要把手掌倒放过来,拇指朝下,食指(和其它三指一起)还是与a同向,你可以看到,b又处于掌心一侧了。但这是拇指是向下的,这就是c的方向。
总结一下右手法则的用法:
1.a与b叉积,新的向量c总是与a,b所在的平面垂直的。对于这个平面,以及与之垂直的线(c在这根线里)所在的位置,没有右手法则也可以确定。
2.我们知道a与b叉积得到的向量c在a,b所在的平面的垂直线里,但是,它究竟是指向上的,还是指向下的,单单看这个平面,我们是不知道的。怎么定c的朝向呢?这就要看a与b的相对