mysql虚拟列实现计算_MySQL5.7 虚拟列实现表达式索引

本文介绍了MySQL 5.7引入的虚拟列特性,用于解决函数索引的问题,提高查询性能。通过示例展示了如何使用虚拟列创建基于日期的索引,从而在查询时避免全表扫描,有效利用索引。
摘要由CSDN通过智能技术生成

MySQL自古以来就不提供函数索引这么复杂的功能。那怎么在MySQL里面实现这样的功能呢? 我们先来看看函数索引的概念。函数索引,也可称为表达式索引,也就是基于字段以特定函数(表达式)建立索引来提升查询性能之需。函数索引的优势在于更加精确的获取所需要的数据。

MySQL 5.7提供了一个新的特性,虚拟列,可以很完美的解决这个问题。

在介绍虚拟列之前,我们来看看在MySQL里面普通索引的范例。

示例表结构:

1

2CREATE TABLE t1 (id INT ,rank INT, log_time DATETIME, nickname VARCHAR(64)) ENGINE INNODB;

ALTER TABLE t1 ADD PRIMARY KEY (id), ADD KEY idx_rank (rank),ADD KEY idx_log_time (log_time);

示例表数据量,这里我增加了5000条记录:

1

2

3

4

5

6

7mysql> select count(*) from t1;

+----------+

| count(*) |

+----------+

|     5000 |

+----------+

1 row in set (0.00 sec)

假设我们来检索2015年4月9号的数据。(结果是有两条记录,id 分别为95和3423。)

1

2

3

4

5

6

7

8

9

10

11

12mysql> SELECT * FROM t1 WHERE DATE(log_time) = '2015-04-09'\G

*************************** 1. row ***************************

id: 95

rank: 24

log_time: 2015-04-09 05:53:13

nickname: test

*************************** 2. row ***************************

id: 3423

rank: 42

log_time: 2015-04-09 02:55:38

nickname: test

2 rows in set (0.01 sec)

下来我们看看这条语句的查询计划。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15mysql> explain SELECT * FROM t1 WHERE DATE(log_time) = '2015-04-09'\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 5000

filtered: 100.00

Extra: Using where

1 row in set, 1 warning (0.00 sec)

我们发现TYPE是ALL,扫描的函数是5000,也就是说这条语句进行了一个全表扫描。 虽然给字段log_time 加了索引,但是没有用到,那这个时候怎么办?

在MySQL里面一般这样修改:

1

2

3

4

5

6

7

8

9

10

11

12mysql> SELECT * FROM t1 WHERE log_time >= '2015-04-09 00:00:00' AND log_time <='2015-04-10 00:00:00'\G

*************************** 1. row ***************************

id: 3423

rank: 42

log_time: 2015-04-09 02:55:38

nickname: test

*************************** 2. row ***************************

id: 95

rank: 24

log_time: 2015-04-09 05:53:13

nickname: test

2 rows in set (0.00 sec)

通过查询结果,发现结果集一致,那再来看看查询计划

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15mysql> explain SELECT * FROM t1 WHERE log_time >= '2015-04-09 00:00:00' AND log_time <= '2015-04-10 00:00:00'\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

partitions: NULL

type: range

possible_keys: idx_log_time

key: idx_log_time

key_len: 6

ref: NULL

rows: 2

filtered: 100.00

Extra: Using index condition

1 row in set, 1 warning (0.00 sec)

可以看到这条修改过的语句很好的利用到了idx_log_time这条索引。

那好,这个是之前在MySQL 5.6以及之前的旧版本解决方法,随着MySQL 5.7的发布,虚拟列的出现让这个问题更加简单。

现在修改下之前的表结构:

1ALTER TABLE t1 ADD COLUMN log_date  DATE AS (DATE(log_Time)) stored, ADD KEY idx_log_date (log_date);

这样,增加了一新列,用来存放date(log_time)这个表达式,并且给他加了一列索引。

那么,之前的语句就变成如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14mysql> SELECT * FROM t1 WHERE log_date = '2015-04-09'\G

*************************** 1. row ***************************

id: 95

rank: 24

log_time: 2015-04-09 05:53:13

nickname: test

log_date: 2015-04-09

*************************** 2. row ***************************

id: 3423

rank: 42

log_time: 2015-04-09 02:55:38

nickname: test

log_date: 2015-04-09

2 rows in set (0.00 sec)

执行后结果集和之前的一致。

我们来看看查询计划,发现很好的利用了idx_log_date索引列。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15mysql> explain  SELECT * FROM t1 WHERE log_date = '2015-04-09'\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

partitions: NULL

type: ref

possible_keys: idx_log_date

key: idx_log_date

key_len: 4

ref: const

rows: 2

filtered: 100.00

Extra: NULL

1 row in set, 1 warning (0.00 sec)

通过以上介绍,我们看到虚拟列实现起来相对之前的方法来的容易的多。但是这里笔者还是得说上几句。

函数索引的用法以及SQL语句虽然写起来简单,但是在大部分场合下,只能说不得已而为之,是一种设计上的缺陷,后期增加了运维人员的运维难度以及繁琐度。这也就是为什么MySQL 直到5.7才推出了这项类似的功能的原因。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值