错排java_leetcode说明,题解

本文探讨了递归和动态规划在解决数学问题中的应用,包括信件错排问题的计算,描述了一个农场中母牛繁殖数量的动态模型,以及在有障碍物的网格中计算不同路径数量的方法。同时,还介绍了如何通过动态规划解决整数分割以最大化乘积以及解码方法问题。
摘要由CSDN通过智能技术生成

一. 斐波那契数列

1. 信件错排问题

一共有n封信,初始状态每一封信都放在对应的信箱里面,如,1号信放在一号信箱,2号信在2号信箱,n号信在n号信箱中。现在要打乱他们的顺序,D(n)就是n封信的乱排个数,首先从n号信下手,n号信不能放在n号位置。把n号信拿出来,可以放在1,2…n-1号位置上,一共有n-1次选择,假如放在k号位置,现在k号信箱被n号信占据,现在处理k号信。

* k号信放在n号信箱。那么现在就处理剩下的n-2个信箱的东西就行了,所以是D(n-2).

* k号信不能放在n号信箱。我们把k号看做是新的n号,把原先的n号信放置的地方忽略,它可放在1,2,…k-1,k+1,…n-2,n-1上面,就相当于D(n-1),n-1封信的乱排个数。

* 所以最后的递推公式就是 D(n)=(n-1)[ D(n-2)+D(n-1) ]

2. 母牛生产

程序员代码面试指南-P181

题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。

第 i 年成熟的牛的数量为:

49555ad81f4d422c7a2c1ed63734c22e.png

dp[i-1]:第i-1年的牛都能顺利活到第i年。

dp[i-3]:第i-3年的牛都已经成熟,它们各自生出新的小牛。

所以递推公式就是 今年的牛=去年的牛+今年新生的牛

二. 矩阵的总路径数(可能有障碍物)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:

[

[0,0,0],

[0,1,0],

[0,0,0]

]

输出: 2

解释:

3x3 网格的正中间有一个障碍物。

从左上角到右下角一共有 2 条不同的路径:

向右 -> 向右 -> 向下 -> 向下

向下 -> 向下 -> 向右 -> 向右

https://leetcode-cn.com/problems/unique-paths-ii/solution/jian-dan-dpbi-xu-miao-dong-by-sweetiee/

三. 分割整数

将整数分割成一个个小整数相加,求划分的结果,使小整数的积最大。

https://leetcode-cn.com/problems/integer-break/solution/343-zheng-shu-chai-fen-tan-xin-by-jyd/

解码方法(将数字解码为字符串有多少种方法)

https://leetcode-cn.com/problems/decode-ways/

下面是思路

https://leetcode-cn.com/problems/decode-ways/solution/mmplao-niang-zhong-yu-xie-chu-lai-liao-by-vegetabl/

下面是代码(使用了特殊条件的判断)

https://leetcode-cn.com/problems/decode-ways/solution/dong-tai-gui-hua-java-python-by-liweiwei1419/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值