一. 斐波那契数列
1. 信件错排问题
一共有n封信,初始状态每一封信都放在对应的信箱里面,如,1号信放在一号信箱,2号信在2号信箱,n号信在n号信箱中。现在要打乱他们的顺序,D(n)就是n封信的乱排个数,首先从n号信下手,n号信不能放在n号位置。把n号信拿出来,可以放在1,2…n-1号位置上,一共有n-1次选择,假如放在k号位置,现在k号信箱被n号信占据,现在处理k号信。
* k号信放在n号信箱。那么现在就处理剩下的n-2个信箱的东西就行了,所以是D(n-2).
* k号信不能放在n号信箱。我们把k号看做是新的n号,把原先的n号信放置的地方忽略,它可放在1,2,…k-1,k+1,…n-2,n-1上面,就相当于D(n-1),n-1封信的乱排个数。
* 所以最后的递推公式就是 D(n)=(n-1)[ D(n-2)+D(n-1) ]
2. 母牛生产
程序员代码面试指南-P181
题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。
第 i 年成熟的牛的数量为:
dp[i-1]:第i-1年的牛都能顺利活到第i年。
dp[i-3]:第i-3年的牛都已经成熟,它们各自生出新的小牛。
所以递推公式就是 今年的牛=去年的牛+今年新生的牛
二. 矩阵的总路径数(可能有障碍物)
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
向右 -> 向右 -> 向下 -> 向下
向下 -> 向下 -> 向右 -> 向右
https://leetcode-cn.com/problems/unique-paths-ii/solution/jian-dan-dpbi-xu-miao-dong-by-sweetiee/
三. 分割整数
将整数分割成一个个小整数相加,求划分的结果,使小整数的积最大。
https://leetcode-cn.com/problems/integer-break/solution/343-zheng-shu-chai-fen-tan-xin-by-jyd/
解码方法(将数字解码为字符串有多少种方法)
https://leetcode-cn.com/problems/decode-ways/
下面是思路
https://leetcode-cn.com/problems/decode-ways/solution/mmplao-niang-zhong-yu-xie-chu-lai-liao-by-vegetabl/
下面是代码(使用了特殊条件的判断)
https://leetcode-cn.com/problems/decode-ways/solution/dong-tai-gui-hua-java-python-by-liweiwei1419/