pytorch 反卷积 可视化_[PyTorch]PyTorch中反卷积的用法

pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True)

class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True)

我不禁有疑问:

问题1: 两个函数的参数为什么几乎一致呢?

问题2: 反卷积层中的 output_padding是什么意思呢?

问题3: 反卷积层如何计算input和output的形状关系呢?

看了中文文档后,我得不出答案,看了英文文档,才弄明白了。花费了一个下午的时间去研究这个问题,值得用此文纪录一下。

我们知道,在卷积层中,输入输出的形状关系为:

o = [ (i + 2p - k)/s ] +1 (1)

其中:

O : 为 output size

i: 为 input size

p: 为 padding size

k: 为kernel size

s: 为 stride size

[] 为下取整运算

(1) 当 S=1 时

若 s等于1,则公式(1)中的取整符号消失,o 与 i 为 一一对应 的关系。 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride= 1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o, 则它们为 交叉对应 的关系,即:

i = o'

o = i'

为回答问题3, 我们将上述关系代入公式中,即:

i' = o' + 2p - k +1

已知 i', 即可推出 o':

o' = i' - 2p + k - 1 (2)

摘两个例子:

(2) 当 S>1 时

若 S>1 , 则公式(1)中的取整符号不能消去,o 与 i 为 多对1 的关系。 效仿 S=1时的情形, 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride>1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o,

i' = [ (o' + 2p - k)/s ] +1

已知 i', 我们可以得出 s 个 o' 解:

o'(0) = ( i' - 1) x s + k - 2p

o'(1) = o'(1) + 1

o'(2) = o'(1) + 2

...

o'(s-1) = o'(1) + s-1

即:

o'(n) =o'(1) + n = ( i' - 1) x s + k - 2p + n,

n = {0, 1, 2...s-1}

为了确定唯一的 o' 解, 我们用反卷积层函数中的ouput padding参数指定公式中的 n 值。这样,我们就回答了问题(2)。

摘一个简单的例子:

(3) 实验验证

给出一小段测试代码,改变各个参数值,运行比较来验证上面得出的结论,have fun~.

from torch import nn

from torch.nn import init

from torch.autograd import Variable

dconv = nn.ConvTranspose2d(in_channels=1, out_channels= 1, kernel_size=2, stride=2, padding=1,output_padding=0, bias= False)

init.constant(dconv.weight, 1)

print(dconv.weight)

input = Variable(torch.ones(1, 1, 2, 2))

print(input)

print(dconv(input))

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【级课程】</strong></span>,级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页