函数最值问题一直以来是中考的重点和难点,它包含了二次函数的性质与应用、几何图形中的相关证明,内容涉及广,综合知识点较多,本试卷是老师整理的有关于函数最值问题50例,可供同学们刷题和作为参照,希望能帮助到即将中考的学生。可以收藏转发和分享,整理不易,欢迎关注@优jia教育和在下方点赞留言。

第1题先用x表示出另一数,再求出y与x的表达式,求出其最值即可;
第3题可先设点P的坐标为(m,-m²-2m-5),分别用含m的代数式表示出PM,PN的值,再构造出PM+PN的值与m的函数关系,然后利用二次函数的性质解决问题即可;
第4题首先将二次函数的解析式配成顶点式,根据该函数的开口向上,故图象上的点离对称轴的水平距离越大,函数值就越大,从而即可解决问题;
第6题先求出抛物线的对称轴,再根据二次函数的增减性列出不等式,求解即可;
第8题当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值;
第10题根据点P(m,0)得到点A,B的坐标,求得线段AB的长度,当线段AB最短时,正方形面积最小;

第11题已知一次函数解析式,即可求得与坐标轴的交点A、B。设PQ与x轴的交点为E,根据反比例函数图像上点的特点,△OPE的面积恒为2。所以当△OEQ面积最大时,△ 的面积最大。设Q点坐标,将△OEQ的面积用数量关系式表达出来,转化为二次函数求最最值问题,即可求出 △ 面积的最大值;
第12题将被开方数整理成顶点式,然后根据二次函数的最值问题解答即可;
第14题由题意,三角形BCD的面积最大,只需BC边上的高最大,即点D为抛物线的最高点D(3,9),结合菱形的性质可得BC=OC,于是根据S△BCD=½BC×yD可求解;
第15题中第(1)问过点C作CD⊥AB于点D,根据点到直线的距离垂线段最小,此时CD最小,首先根据勾股定理算出AB的长,然后根据三角形的面积法得出AC×BC=AB