最长等差数列 leetcode java_寻找最长等差数列 | 学步园

本文介绍了如何使用Java解决LeetCode上的最长等差数列问题。通过两种不同的动态规划方法,分别在不考虑元素相邻性和要求元素连续的情况下找到最长等差子序列,算法复杂度分析并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

问题描述:给定一个大小为n的数组,要求写出一个

首先问题并没有要求要按照原来数组的顺序,所以可以先对该数组排序。

1. 如果不要求该最长子序列中的元素是相邻的话,可以用一个简单的DP来完成。

令 f [i] [j] 表示以 i 为结尾的某子序列(该子序列的等差为 j )的最大长度;

那么    f [i] [j] =  f [i-1] [ Num[i] - Num[j] ] +1 ,  i>0,此等式则为DP的转移方程,明显这个算法的复杂度是O( n^ 2)的;

代码很好写了,只是这里偷懒假设了 两个数间的差的最大值(即上面方程中 j 的取值范围)是有范围的,因此才偷懒用数组在常数时间内完成查找,而如果去掉这个假设的话,就得用Vector然后二分查找或者直接用 map,这都会导致最后的复杂度是 O ( n^ 2 * logn );

const int MAX=1010;

int dp[MAX][MAX];

int longestSubSeq(vector nums)

{

int sz=nums.size();

if (sz <= 1) return sz;

sort(nums.begin(),nums.end());

int ans=1;

int i,j;

for(i=0;i

for(j=0;j

dp[i][j]=1; //单独成列

for(i=1;i

{

for(j=i-1;j>=0;j--)

{

int diff=nums[i]-nums[j];

dp[i][diff]=dp[j][diff]+1;

ans=max(ans,dp[i][diff]);

}

}

return ans;

}

1.2 还有另外一种DP的方法,令 dp[i] [j] 表示 i 到 j 的子串能够取到的最大值, 那么明显 dp [i] [j] = max{ dp[i] [k] +1 |  nums[j]- nums[k] = nums[k] - nums[i] , 其中 i

int maxSeq(vector& num)

{

int n=num.size();

if(n<2)

return 0;

vector > dp(n,vector(n,1));

int ans=1;

for(int i=0;i

for(int j=i+1;j

{

int k=0;

for(int t=0;t

{

if(num[i]-num[t]==num[j]-num[i])

k=max(k,dp[t][i]);

}

dp[i][j]+=k;

ans=max(ans,dp[i][j]);

}

return ans+1;

}

2. 如果要求子序列是连续的,那么用 dp[i] 表示以i结尾的子串可以得到的最大长度, len[i]对应这个长度的序列的等差值;

所以有  dp [i] = dp[i-1]+1 (当 nums[i]-nums[i-1] = len[i-1] )或2;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值