问题描述:给定一个大小为n的数组,要求写出一个
首先问题并没有要求要按照原来数组的顺序,所以可以先对该数组排序。
1. 如果不要求该最长子序列中的元素是相邻的话,可以用一个简单的DP来完成。
令 f [i] [j] 表示以 i 为结尾的某子序列(该子序列的等差为 j )的最大长度;
那么 f [i] [j] = f [i-1] [ Num[i] - Num[j] ] +1 , i>0,此等式则为DP的转移方程,明显这个算法的复杂度是O( n^ 2)的;
代码很好写了,只是这里偷懒假设了 两个数间的差的最大值(即上面方程中 j 的取值范围)是有范围的,因此才偷懒用数组在常数时间内完成查找,而如果去掉这个假设的话,就得用Vector然后二分查找或者直接用 map,这都会导致最后的复杂度是 O ( n^ 2 * logn );
const int MAX=1010;
int dp[MAX][MAX];
int longestSubSeq(vector nums)
{
int sz=nums.size();
if (sz <= 1) return sz;
sort(nums.begin(),nums.end());
int ans=1;
int i,j;
for(i=0;i
for(j=0;j
dp[i][j]=1; //单独成列
for(i=1;i
{
for(j=i-1;j>=0;j--)
{
int diff=nums[i]-nums[j];
dp[i][diff]=dp[j][diff]+1;
ans=max(ans,dp[i][diff]);
}
}
return ans;
}
1.2 还有另外一种DP的方法,令 dp[i] [j] 表示 i 到 j 的子串能够取到的最大值, 那么明显 dp [i] [j] = max{ dp[i] [k] +1 | nums[j]- nums[k] = nums[k] - nums[i] , 其中 i
int maxSeq(vector& num)
{
int n=num.size();
if(n<2)
return 0;
vector > dp(n,vector(n,1));
int ans=1;
for(int i=0;i
for(int j=i+1;j
{
int k=0;
for(int t=0;t
{
if(num[i]-num[t]==num[j]-num[i])
k=max(k,dp[t][i]);
}
dp[i][j]+=k;
ans=max(ans,dp[i][j]);
}
return ans+1;
}
2. 如果要求子序列是连续的,那么用 dp[i] 表示以i结尾的子串可以得到的最大长度, len[i]对应这个长度的序列的等差值;
所以有 dp [i] = dp[i-1]+1 (当 nums[i]-nums[i-1] = len[i-1] )或2;