linux tensorflow例子,tensorflow cnn 入门例子

from __future__ import print_function

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):

global prediction

y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob:1})

correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})

return result

def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(initial)

def bias_variable(shape):

initial = tf.constant(0.1, shape=shape)

return tf.Variable(initial)

def conv2d(x, W):

return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_poll_2x2(x):

return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

xs = tf.placeholder(tf.float32, [None, 784])/255.

ys = tf.placeholder(tf.float32, [None, 10])

keep_prob = tf.placeholder(tf.float32)

x_image = tf.reshape(xs, [-1, 28, 28, 1])

## conv1

W_conv1 = weight_variable([5,5,1,32])

b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_poll1 = max_poll_2x2(h_conv1)

## conv2

W_conv2 = weight_variable([5,5,32,64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_poll1, W_conv2) + b_conv2)

h_poll2 = max_poll_2x2(h_conv2)

W_fc1 = weight_variable([7*7*64, 1024])

b_fc1 = bias_variable([1024])

h_poll2_flat = tf.reshape(h_poll2, [-1, 7*7*64])

h_fc1 = tf.nn.relu(tf.matmul(h_poll2_flat, W_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## fc2 layer ##

W_fc2 = weight_variable([1024, 10])

b_fc2 = bias_variable([10])

prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# the error between prediction and real data

cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),

reduction_indices=[1])) # loss

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})

if i % 50 == 0:

print(compute_accuracy(

mnist.test.images[:1000], mnist.test.labels[:1000]))

https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-05-CNN3/

Post Views: 9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值