电气自动化与信息化技术在机械采煤中的应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:现代煤炭开采依赖于电气自动化和信息化技术的集成应用以提高效率和安全性。本文详细分析了这些技术在采煤机控制、输送自动化、安全保护、实时监控、GIS系统、数字化矿山、工业物联网、大数据分析及AI应用中的具体应用,展示了这些技术的协同作用如何促进故障预防、安全预警、生产调度优化和环保节能,推动煤炭产业智能化和可持续发展。 电气自动化

1. 采煤机电气控制系统设计与实现

1.1 采煤机电气控制系统概述

采煤机电气控制系统是煤矿开采过程中不可或缺的一部分,其主要功能包括控制采煤机的启动、运行、停止以及故障自检等。电气控制系统的设计直接关系到煤矿开采的效率和安全,因此,对电气控制系统的选型和设计提出了更高的要求。

1.2 采煤机电气控制系统设计的关键要素

在设计采煤机电气控制系统时,需要考虑以下几个关键要素:系统稳定性、操作安全性、维护便捷性以及成本效益。其中,系统稳定性是基础,确保采煤机在各种复杂工况下能稳定运行;操作安全性和维护便捷性是保障,避免设备故障导致的安全事故和长时间的停产维护;成本效益是关键,要在满足性能需求的同时,合理控制成本。

1.3 采煤机电气控制系统实现的技术路线

采煤机电气控制系统通常采用先进的电子技术和控制技术,如PLC(可编程逻辑控制器)控制、变频调速技术、远程监控技术等。通过这些技术的综合应用,不仅提高了电气控制系统的响应速度和精确度,还实现了对设备运行状态的实时监控,便于故障的及时诊断和处理。

在下一章节,我们将继续探讨输送系统的自动化技术应用,进一步分析自动化设备的选择以及控制策略的制定。

2. 输送系统自动化技术应用

在现代采煤作业中,输送系统是整个作业链中不可或缺的一环。它不仅涉及到物料的高效运输,还关系到整个煤矿生产过程的自动化和智能化水平。本章节深入探讨了输送系统的自动化技术应用,包括自动化设备的选择、控制策略的设计、实施与优化。

2.1 输送系统的自动化设备选择

2.1.1 选择标准和要求

选择输送系统的自动化设备是一个多维度的决策过程,需要基于以下几个标准和要求:

  • 性能参数 :包括带宽、带速、载荷能力、效率等。
  • 可靠性 :设备应具备高可靠性,减少故障停机时间。
  • 安全性能 :必须符合煤矿安全生产的要求,具备良好的防爆、抗静电性能。
  • 适应性 :适合不同的工作环境,如狭窄空间、潮湿多尘等。
  • 智能化程度 :具备一定的智能化功能,如故障自诊断、远程监控等。

2.1.2 设备性能对比分析

为了对比不同供应商提供的设备,我们根据上述标准进行了性能对比分析。以下是一个简化的比较表格:

| 设备类型 | 带宽(mm) | 带速(m/s) | 载荷能力(t/h) | 可靠性 | 安全性能 | 适应性 | 智能化程度 | | -------------- | ---------- | ----------- | --------------- | ------ | -------- | ------ | ---------- | | 设备A | 1200 | 2.5 | 1500 | 高 | 高 | 中 | 中 | | 设备B | 1600 | 3.0 | 2000 | 很高 | 很高 | 高 | 高 | | 设备C | 1000 | 2.0 | 1200 | 中 | 中 | 低 | 低 |

基于性能分析,我们倾向于选择设备B,因为它在各个方面表现较为均衡,特别是在载荷能力和智能化程度上表现突出。

2.2 输送系统的自动化控制策略

2.2.1 控制系统设计原则

自动化控制策略的设计原则包括:

  • 高效率原则 :确保系统的整体运输效率达到最高。
  • 易操作原则 :系统操作简便,易于监控与管理。
  • 可扩展原则 :控制策略设计需考虑到未来技术升级与扩展。
  • 维护性原则 :系统应便于维护与检修。

2.2.2 控制程序的编写和调试

自动化控制程序编写与调试是实现输送系统自动化的核心环节。程序的编写需要遵循一定的逻辑结构,例如:

  • 初始化 :设定初始参数和变量。
  • 状态监测 :实时监测设备状态,如电机电流、带速、载荷等。
  • 故障诊断 :判断是否存在异常,并执行相应的处理程序。
  • 控制逻辑 :根据监测数据和预设参数,进行启停控制、速度调整等。
  • 应急响应 :在出现故障时,启动应急预案。

以下是一段控制程序的伪代码示例:

初始化系统参数
WHILE 系统运行
    监测电机状态
    IF 故障发生 THEN
        执行故障处理程序
    ELSE
        继续监测带速和载荷
        IF 需要调整 THEN
            调整输送带速度
        ENDIF
    ENDIF
    更新系统状态
END WHILE

在编写和调试程序时,需要反复测试并优化,确保控制逻辑的准确性,以达到提升自动化程度的目的。

表格与mermaid流程图实例

以下是利用mermaid格式的流程图,来描述自动化控制程序的一个简单示例:

graph LR
    A[开始] --> B[初始化系统]
    B --> C[进入主循环]
    C --> D[监测电机状态]
    D -->|正常| E[监测带速和载荷]
    E -->|无需调整| C
    E -->|需要调整| F[调整输送带速度]
    F --> C
    D -->|出现故障| G[执行故障处理]
    G --> C

这样,通过持续的优化和测试,实现输送系统的高效自动控制。自动化控制策略的设计与实施不仅提高了作业效率,也为煤矿的安全生产提供了坚实的技术保障。

3. 安全保护系统自动化实现

3.1 安全保护系统的基本要求与设计

3.1.1 安全保护系统的目标和功能

在现代化矿井中,安全保护系统的设计需要遵守严格的安全标准,保证矿工的生命安全以及设备的安全运行。该系统的首要目标是预防事故的发生,并在紧急情况下提供有效的响应。为了达成这些目标,安全保护系统必须具备以下功能:

  • 实时监控:对矿井内的关键参数进行24小时的实时监控,包括但不限于瓦斯浓度、温度、空气质量等。
  • 故障检测:能够快速检测并识别系统中的异常情况或故障,及时发出警报。
  • 紧急响应:在检测到危险情况时,系统能自动采取措施,如切断电源、启动通风设备等。
  • 数据记录:记录所有监控数据和操作记录,为事故分析和系统维护提供依据。

3.1.2 安全保护系统的硬件架构

安全保护系统的硬件架构通常包括传感器、控制器、执行器和通信设备等关键组件。

  • 传感器:用于检测矿井环境中的各项指标,如瓦斯传感器、温度传感器等。
  • 控制器:系统的中枢,对传感器收集的数据进行处理,并根据预设逻辑做出决策。
  • 执行器:执行控制器的指令,如开关阀门、启动风扇等。
  • 通信设备:确保数据在各组件之间有效传递,通常包括以太网、无线网络等多种通信方式。

3.2 安全保护系统的软件实现

3.2.1 软件逻辑设计与编程

软件逻辑设计是安全保护系统的核心,它决定了系统如何响应各种输入信号。以下是软件逻辑设计的关键步骤:

  • 需求分析:分析系统应具备的功能以及如何实现这些功能。
  • 状态机设计:设计系统状态转换逻辑,明确在不同情况下系统的状态和行为。
  • 编程实现:根据设计的逻辑和算法,编写相应的软件代码。

下面是一个简化的伪代码示例,展示如何设计一个简单的瓦斯浓度监控系统。

# 瓦斯监控系统伪代码
MAX_GAS_LEVEL = 5.0  # 最大允许瓦斯浓度

def check_gas_level(sensor_data):
    current_level = sensor_data['gas']
    if current_level > MAX_GAS_LEVEL:
        trigger_alarm()
        activate_ventilation_system()
    else:
        do_nothing()

def trigger_alarm():
    # 激活报警系统
    pass

def activate_ventilation_system():
    # 激活通风系统
    pass

def do_nothing():
    # 不采取任何操作
    pass

# 假设这是从瓦斯传感器收集的数据
sensor_data = {'gas': 5.5}

# 检查当前瓦斯浓度
check_gas_level(sensor_data)

3.2.2 安全监控界面的实现

安全监控界面是操作员与安全保护系统交互的界面,它需要直观、易用,并提供必要的信息。监控界面通常包括以下部分:

  • 实时数据显示:展示各种传感器的实时数据。
  • 警报和状态指示:出现异常情况时,界面应有明显的警报提示和系统状态指示。
  • 控制按钮和开关:允许操作员进行必要的操作,如启动紧急程序、重置警报等。
  • 历史数据查询:提供历史数据的查询功能,帮助分析事故原因。

监控界面的开发需要采用适合的开发框架,如Web技术(HTML, CSS, JavaScript)或桌面应用程序框架(如Qt),根据实际需求来选择。同时,还需要考虑用户体验,确保在紧急情况下用户能迅速做出反应。

<!-- 简单的HTML示例,显示瓦斯浓度监控界面 -->
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>瓦斯监控系统</title>
</head>
<body>
    <h1>矿井瓦斯监控</h1>
    <div id="gas-status">
        <p>当前瓦斯浓度: <span id="gas-level">0</span>%</p>
        <p id="status-message"></p>
    </div>
    <button onclick="checkGasLevel()">检查瓦斯浓度</button>

    <script>
        function checkGasLevel() {
            // 这里会有调用服务器获取实时数据的逻辑
            var currentLevel = document.getElementById('gas-level').innerText;
            var statusMessage = document.getElementById('status-message');
            if (currentLevel > 5) {
                statusMessage.innerHTML = "警告:瓦斯浓度过高,请立即处理!";
            } else {
                statusMessage.innerHTML = "瓦斯浓度正常。";
            }
        }
    </script>
</body>
</html>

安全保护系统的自动化实现不仅增强了矿井的安全性,同时提高了矿井整体的生产效率。通过对安全保护系统的设计和实现,可以确保一旦有危险情况发生,系统能够快速做出响应,及时切断危险源,保障矿工的生命安全和矿井设备的安全。随着技术的不断进步,未来的安全保护系统将更加智能化、自动化,为矿井安全提供更加强有力的保障。

4. 实时监测与远程监控信息化技术

4.1 实时监测系统的设计与实施

实时监测技术是现代矿山生产中不可或缺的一部分,通过实时监测,能够确保矿井的安全运行,并提高生产效率。实时监测系统能够为矿井提供连续、准确的数据支持,是实现矿井安全、高效生产的基石。

4.1.1 实时数据采集技术

实时数据采集是监测系统的起点,涉及到传感器的选用、数据采集频率的确定以及数据传输的稳定性等关键技术点。对于数据采集技术,首要考虑的因素是系统的精确性和实时性,即要保证数据的准确性,又要确保数据能够被实时传送到监控中心。

传感器的选择需要根据监测对象的特性来进行。例如,温度监测多采用热敏电阻或热电偶,气体浓度监测则需要使用特定的气体传感器。数据采集频率要能够满足矿山安全要求,例如,一氧化碳等有害气体浓度的监测频率通常要达到每分钟数次,而震动监测则可能需要更高的频率。

import random
import time

def collect_sensor_data(sensor_id):
    """
    模拟传感器数据采集过程。
    :param sensor_id: 传感器ID
    :return: 传感器采集到的数据
    """
    sensor_data = random.uniform(0, 100)  # 假设数据范围在0到100之间
    print(f"Sensor {sensor_id} data collected: {sensor_data}")
    return sensor_data

# 模拟传感器数据采集频率为每秒一次
while True:
    for i in range(1, 6):  # 假设有5个传感器
        collect_sensor_data(i)
    time.sleep(1)  # 等待一秒钟后再次采集数据

在上述代码中,我们模拟了一个简单的传感器数据采集过程,每秒采集一次5个不同传感器的数据。在实际应用中,数据采集模块会更加复杂,涉及到多种传感器的协同工作,以及对异常值的处理逻辑。

4.1.2 监测数据的分析与处理

采集到的数据需要经过分析处理,才能用于进一步的决策支持。监测数据的分析通常包括数据的校验、统计、异常检测和趋势预测等步骤。数据校验确保数据的准确性,统计分析帮助我们了解数据分布情况,异常检测可以及时发现潜在的危险因素,而趋势预测则为未来的风险评估和决策提供了依据。

-- 示例:SQL代码用于统计和分析传感器数据
SELECT sensor_id, 
       AVG(data_value) as average_value,
       MAX(data_value) as max_value,
       MIN(data_value) as min_value
FROM sensor_data
WHERE capture_time BETWEEN '2023-01-01' AND '2023-01-02'
GROUP BY sensor_id

以上SQL代码片段展示了如何从数据库中提取特定时间段内的传感器数据,并进行平均值、最大值和最小值的统计分析。这样的分析能够帮助我们快速了解一段时间内传感器的数据变化趋势,为后续的安全评估和维护决策提供数据支持。

4.2 远程监控系统的构建与应用

远程监控系统是现代矿山信息化建设中的重要组成部分,它的建设目标是实现对矿山生产过程的远程实时监控和控制,从而提升管理水平和生产效率。

4.2.1 远程通信技术选型

远程监控系统的核心是远程通信技术。常见的远程通信技术包括工业以太网、无线通信(如4G/5G、Wi-Fi、LoRa等)、卫星通信等。选型时需要考虑矿山的地理环境、通信需求、成本预算以及通信的可靠性和实时性。

工业以太网因其高可靠性和高带宽被广泛应用于矿山环境。无线通信则因其安装便捷和覆盖范围广受到青睐。例如,4G/5G网络能够提供高速的数据传输和较好的实时性,适用于需要远程控制或大范围覆盖的应用场景。卫星通信则适用于一些偏远山区的矿山,尽管其带宽有限,但对于地理位置偏远、地面通信无法覆盖的地区是一个有效的解决方案。

4.2.2 监控平台的搭建与维护

监控平台是远程监控系统的大脑,需要具备数据的采集、存储、分析、展示以及预警等功能。搭建监控平台时,需要考虑硬件设备的选型、软件架构的设计、用户界面的友好性以及系统的扩展性。

硬件设备包括服务器、存储设备、网络设备等,它们是搭建平台的基础。软件架构设计需要考虑系统的稳定性和可维护性,通常采用分层的设计模式,包括数据采集层、数据处理层、服务层和表现层。用户界面设计要直观、简洁,便于操作人员快速掌握和使用。系统扩展性设计应考虑未来可能的功能扩展和升级维护。

graph TD
    A[开始] --> B[确定硬件设备]
    B --> C[设计软件架构]
    C --> D[开发用户界面]
    D --> E[系统部署与测试]
    E --> F[监控平台搭建完成]
    F --> G{是否需要扩展功能}
    G -->|是| H[功能扩展与升级]
    H --> F
    G -->|否| I[监控平台日常维护]

如上图所示,mermaid格式的流程图描述了监控平台搭建的基本流程,从确定硬件设备开始,经历软件架构设计、用户界面开发、系统部署测试,最终完成监控平台搭建。在整个过程中,功能的扩展和升级是持续进行的,以满足未来矿山生产发展的需求。

监控平台的维护工作同样不可忽视,包括定期检查硬件设备的运行状态,更新软件以修补安全漏洞,以及根据用户的反馈进行功能的优化和升级。这些维护措施能够确保监控平台稳定运行,发挥其应有的作用。

通过上述分析,我们能够看到实时监测与远程监控信息化技术的重要性,及其在现代矿山生产中所扮演的核心角色。确保数据采集的准确性和实时性,实现数据的有效分析与处理,并构建可靠稳定的远程监控平台,是实现矿山高效安全运营的关键。

5. 数字化矿山建设技术

5.1 数字化矿山建设的概念与意义

5.1.1 数字化矿山的定义和发展趋势

数字化矿山是利用信息技术对矿山进行深入的数字化改造,整合矿山资源,实现资源高效利用和可持续发展的新型矿山模式。它包括对矿山地质、资源、环境、生产、经营等信息的全面数字化,并基于这些数据构建模型和应用系统,实现矿山的智能化、精细化和可视化管理。

数字化矿山的发展趋势主要体现在以下几个方面: 1. 数据集成化: 随着矿山领域信息技术的快速发展,数据集成化的趋势越来越明显。通过集成各种监测数据、生产数据和管理数据,可实现对矿山资源的全面掌控。 2. 系统智能化: 利用大数据分析、人工智能等技术,矿山系统正向着高度智能化的方向发展。智能化系统可以更好地预测矿产资源的分布,优化生产过程,减少资源浪费。 3. 管理可视化: 数字化矿山中的管理可视化能够帮助决策者更直观地理解矿山状态,做出更加科学的决策。 4. 安全自动化: 数字化矿山的建设将极大地提高矿山生产的安全性,通过自动化的安全监测和预警系统,及时发现并处理潜在的危险源。

5.1.2 数字化矿山对矿业发展的影响

数字化矿山的建设对矿业发展产生了深远的影响,具体体现在以下几个方面: 1. 提高资源开发效率: 通过精确的资源勘查和高效的生产调度,数字化矿山可以大幅度提高矿产资源的开发效率。 2. 降低生产成本: 数字化矿山通过优化生产和管理流程,减少人为错误和资源浪费,从而降低整体的生产成本。 3. 改善作业环境: 采用先进的自动化设备和系统,可以减少工人的体力劳动强度,改善作业环境。 4. 增强安全性能: 安全监控系统的应用使得矿山安全管理更加科学化、规范化,有效减少和预防事故发生。 5. 促进可持续发展: 数字化矿山的建设有助于实现矿山的绿色开采和环境保护,促进矿业的可持续发展。

5.2 数字化矿山关键技术的应用

5.2.1 关键技术的介绍和分析

数字化矿山的建设涉及众多关键技术,包括但不限于: 1. 地理信息系统(GIS): GIS技术用于矿山地质信息的收集、分析和可视化展示,为矿山设计和资源管理提供基础数据。 2. 遥感技术: 通过卫星、航空摄影等手段进行地质信息的探测和分析,是获取大规模区域地质数据的有效方法。 3. 物联网技术: 在矿山中部署传感器和数据采集设备,实现实时数据的自动采集和远程监控。 4. 大数据分析: 大数据技术用于处理矿山产生的海量数据,提取有用信息,为决策支持提供科学依据。 5. 三维建模和可视化: 基于收集的数据,建立矿区的三维地质模型,实现资源和环境的可视化管理。

5.2.2 实际案例研究与效果评估

某矿业公司在数字化矿山的建设中,引入了先进的GIS技术和物联网监控系统,取得了以下效果: - 资源管理优化: 利用GIS技术进行矿床的精确定位和资源量估算,有效提升了资源利用率。 - 生产效率提升: 通过部署传感器和实时监控系统,实时调整生产流程,减少了停机时间,提高了生产效率。 - 安全管理强化: 物联网技术的应用实现了对危险区域的实时监控,及时发现并处理安全隐患,降低了事故发生率。

经过这些技术的应用,该矿山公司的经济效益和安全性都有了显著的提升,数字化矿山建设初见成效。未来,数字化矿山技术的发展将更加注重智能化和自动化,进一步推动矿业的数字化转型。

6. 智能化技术在采煤中的综合应用

随着工业4.0的到来,智能化技术已经成为提高煤矿生产效率和安全水平的关键。本章将深入探讨工业物联网(IoT)、大数据与AI技术、故障诊断与预防系统、安全预警与应急响应机制、生产调度优化方法,以及环保节能措施在采煤领域的综合应用。

6.1 工业物联网(IoT)技术的应用

6.1.1 IoT技术在采煤中的作用

工业物联网技术能够将煤矿生产过程中的各种设备、传感器和系统连接起来,实现数据的实时采集和交换。这种互联互通为矿井的安全监控、设备维护和生产管理提供了强大的支持。通过IoT技术,可以实现对矿井环境参数的实时监测、设备运行状态的远程监控以及异常状况的即时响应,从而大幅提高生产效率和矿工安全。

6.1.2 物联网系统的设计与实施

物联网系统的设计需要考虑数据采集的准确性、传输的稳定性、存储的安全性和应用的便捷性。在采煤中,物联网系统通常包括传感器网络、数据采集单元、网络传输层和应用层。传感器网络负责采集矿井内的环境数据,如甲烷浓度、温度等;数据采集单元将传感器信息收集并进行初步处理;网络传输层将处理后的数据安全地传输到控制中心;应用层则提供用户界面,让操作人员能够监控矿井状况并作出决策。

graph TD;
    A[传感器网络] -->|采集数据| B[数据采集单元]
    B -->|传输数据| C[网络传输层]
    C -->|数据处理| D[应用层]
    D -->|监控和决策| E[操作人员]

6.2 大数据与AI技术的集成应用

6.2.1 大数据分析在采煤中的应用

大数据技术在采煤中的应用主要体现在海量数据的存储、管理和分析上。通过分析历史数据和实时数据,可以发现生产中的模式和趋势,进而优化生产流程和资源配置。例如,通过对作业数据的分析,可以预测设备的维护需求,避免非计划的停机时间,提高设备的运行效率。

6.2.2 AI技术在提高生产效率中的角色

AI技术特别是机器学习算法,能够在大规模数据的基础上进行学习,从而发现隐含的规律并做出预测。在采煤过程中,AI可以应用于矿石质量预测、采掘路径规划、人员行为分析等多个方面。例如,AI可以分析地质雷达的扫描数据,预测开采区域的最佳位置,从而提高矿石的采收率。

6.3 故障诊断与预防系统的构建

6.3.1 故障诊断系统的框架设计

故障诊断系统能够实时监控和分析煤矿设备的运行状态,及时发现设备故障的征兆。一个有效的故障诊断系统包括数据采集模块、数据预处理模块、特征提取模块、诊断算法模块和结果输出模块。数据采集模块负责从各种传感器收集数据;数据预处理模块对采集到的数据进行清洗和格式化;特征提取模块从处理后的数据中提取出关键特征;诊断算法模块应用机器学习等算法对特征进行分析;结果输出模块则将诊断结果呈现给操作人员。

6.3.2 预防策略和效果分析

基于故障诊断系统的分析结果,可以制定相应的预防策略。比如,通过对设备运行数据的长期分析,可以得出设备故障的周期性模式,并据此调整维护计划。预防策略的实施效果可以通过比较故障发生率和维护成本的变化来评估。

6.4 安全预警与应急响应机制的优化

6.4.1 预警机制的建立和完善

安全预警机制的建立需要基于对矿井内环境参数的实时监测。例如,甲烷浓度、煤尘浓度、温度等参数的异常波动都是潜在风险的信号。预警机制应包含自动报警系统、紧急疏散指示和事故处理指导。当监测到的参数超过预定阈值时,系统能够自动发出警报,并指导矿工采取相应的应急措施。

6.4.2 应急响应流程和案例分析

应急响应流程应当详细规定从预警到疏散、从现场救援到事后处理的所有步骤。案例分析可以展示在特定的事故情况下,预警机制和应急响应流程是如何运作的,哪些措施是有效的,哪些环节还有改进的空间。

6.5 生产调度优化方法的探索

6.5.1 调度优化的理论基础

生产调度优化的目标是在满足作业安全和质量标准的前提下,最大化矿井的生产效率。理论基础包括运筹学中的线性规划、整数规划、网络流理论等。通过建立数学模型,可以计算出在不同条件下的最优调度方案。

6.5.2 现场实施与效果对比

调度优化方法的现场实施需要考虑实际的矿井条件,如作业设备的性能、作业人员的技能等。通过对比实施前后的生产数据,可以评估调度优化方法的有效性。数据分析应该包括生产量、作业时间和设备利用率等多个指标。

6.6 环保节能措施的实施与评估

6.6.1 环保节能技术的概述

环保节能措施旨在减少煤矿生产过程中的能源消耗和污染物排放。这包括采用高效节能的设备、改进生产工艺、合理利用余热等。例如,通过使用变频器来控制电机,可以有效降低电能消耗;使用先进的通风系统可以降低井下温度,提高工人的舒适度,同时减少冷气的浪费。

6.6.2 实施效果的监测与评估

实施环保节能措施后,需要定期监测矿井内的能源消耗、排放标准等关键指标。通过与实施前的数据对比,可以评估节能措施的成效。同时,还要分析节能效果与经济投入的比率,以评价措施的经济可行性。

通过综合应用上述智能化技术,煤矿企业能够实现生产效率的提升、安全水平的增强和资源利用的优化。这些技术的集成使用,是构建现代智能化矿山的重要步骤。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:现代煤炭开采依赖于电气自动化和信息化技术的集成应用以提高效率和安全性。本文详细分析了这些技术在采煤机控制、输送自动化、安全保护、实时监控、GIS系统、数字化矿山、工业物联网、大数据分析及AI应用中的具体应用,展示了这些技术的协同作用如何促进故障预防、安全预警、生产调度优化和环保节能,推动煤炭产业智能化和可持续发展。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值