python中文分词工具jieba_python中文分词工具:结巴分词jieba

jieba是一款流行的Python中文分词工具,提供精确、全和搜索引擎三种模式,支持繁体分词、自定义词典和HMM模型。通过动态规划和Viterbi算法实现高效分词,并可通过用户自定义词典增强歧义纠错能力。jieba还支持并行分词以提高速度。
摘要由CSDN通过智能技术生成

结巴分词jieba

特点

支持三种分词模式:

精确模式,试图将句子最精确地切开,适合文本分析;

全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

支持繁体分词

支持自定义词典

算法

基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)

采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

分词方法说明

jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型

jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8

jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用

jieba.lcut 以及 jieba.lcut_for_search 直接返回 list,建议使用list(cul())来转换,源码也是这样做的,少一步函数调用。

jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

添加自定义词典

载入词典

开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率

用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径

词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。

词频省略时使用自动计算的能保证分出该词的词频。

例如:

创新办 3 i

云计算 5

凱特琳 nz

台中

更改分词器

(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。

范例:

自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt

用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py

之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /

加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /

调整词典

使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。

使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。

注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))

如果/放到/post/中将/出错/。

>>> jieba.suggest_freq(('中', '将'), True)

494

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))

如果/放到/post/中/将/出错/。

>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))

「/台/中/」/正确/应该/不会/被/切开

>>> jieba.suggest_freq('台中', True)

69

>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))

「/台中/」/正确/应该/不会/被/切开

"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数

jieba.disable_parallel() # 关闭并行分词模式

例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。

jieba分词的安装

虚拟环境中安装

cd /media/pika/files/mine/ENV/ubuntu_env

pika:/media/pika/files/mine/ENV/ubuntu_env$. bin/activate

(ubuntu_env) pika:/media/pika/files/mine/ENV/ubuntu_env$pip install jieba

直接在系统中安装使用

pip install jieba

或者安装到python3中:pip3 install jieba

jieba中文分词的使用

示例1:不同切分模式

代码示例

# encoding=utf-8

import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)

print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)

print("Default Mode: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式

print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式

print(", ".join(seg_list))

输出:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

示例2:自定义词典

importjieba

sentences =["我喜欢吃土豆","土豆是个百搭的东西","我不喜欢今天雾霾的北京", 'costumer service']

# jieba.suggest_freq('雾霾', True)# jieba.suggest_freq('百搭', True)words =[list(jieba.cut(doc)) fordoc insentences]

print(words)

[['我', '喜欢', '吃', '土豆'],

['土豆', '是', '个', '百搭', '的', '东西'],

['我', '不', '喜欢', '今天', '雾霾', '的', '北京'],

['costumer', ' ', 'service']]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值