工厂人员工装穿戴识别依据大规模不同外观工装数据识别训练,工厂人员工装穿戴识别与现场已有监控摄像头互相配合监控现场人员着装情况,工厂人员工装穿戴识别一旦发现工作中人员并没有按照要求穿着工装,系统会自动传出报警。在提醒相关人员的前提下,工厂人员工装穿戴识别系统将一键备份违规时长、违规图片作为后期查询根据。

从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。相比于 YOLOv2 的 骨干网络,YOLOv3 进行了较大的改进。借助残差网络的思想,YOLOv3 将原来的 darknet-19 改进为darknet-53。Darknet-53主要由1x1和3x3的卷积层组成,每个卷积层之后包含一个批量归一化层和一个Leaky ReLU,加入这两部分的目的是为了防止过拟合。卷积层、BN层以及LeakyReLU共同组成Darknet-53的基本CBL。因为在Darknet-53中共包含53个这样的CBL,所以称其为Darkent-53。

工厂人员工装穿戴识别 YOLOv3_人工智能

人工智能机器视觉算法改变提升了了大家生活习惯。工装识别算法在工厂车间、工地、银行、煤矿石化电力等多个涉及到安全的场所得到应用。工厂人员工装穿戴识别分析识别秒级反馈,实时分析现场人员的违规行为,提升监控的效率和安全,工厂人员工装穿戴识别为现场人员安全作业保驾护航。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.

工厂人员工装穿戴识别算法是应用最新神经网络算法和边缘视觉分析技术,替代人的眼睛,实时分析监控画面视频信息,依据人工智能技术分析判断现场人员着装及行为情况,发现违规行为(不穿戴工装)及时预警抓拍存档同步向后台推送违规人员信息,助力后台监督人员能够及时获取第一时间的违规行为及时处理。